Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 109: 129814, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815872

RESUMEN

High temperature requirement A serine peptidase 1 (HTRA1) is a serine protease involved in an array of signaling pathways. It is also responsible for the regulation of protein aggregates via refolding, translocation, and degradation. It has subsequently been found that runaway proteolytic HTRA1 activity plays a role in a variety of diseases, including Age-Related Macular Degeneration (AMD), osteoarthritis, and Rheumatoid Arthritis. Selective inhibition of serine protease HTRA1 therefore offers a promising new strategy for the treatment of these diseases. Herein we disclose structure-activity-relationship (SAR) studies which identify key interactions responsible for binding affinity of small molecule inhibitors to HTRA1. The study results in highly potent molecules with IC50's less than 15 nM and excellent selectivity following a screen of 35 proteases.


Asunto(s)
Serina Peptidasa A1 que Requiere Temperaturas Altas , Serina Endopeptidasas , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Relación Estructura-Actividad , Humanos , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/síntesis química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química
2.
Biochemistry ; 61(21): 2398-2408, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36223199

RESUMEN

The phytocannabinoid cannabigerol (CBG) is the central biosynthetic precursor to many cannabinoids, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Though the use of CBG has recently witnessed a widespread surge because of its beneficial health effects and lack of psychoactivity, its metabolism by human cytochrome P450s is largely unknown. Herein, we describe comprehensive in vitro and in vivo cytochrome P450 (CYP)-mediated metabolic studies of CBG, ranging from liquid chromatography tandem mass spectrometry-based primary metabolic site determination, synthetic validation, and kinetic behavior using targeted mass spectrometry. These investigations revealed that cyclo-CBG, a recently isolated phytocannabinoid, is the major metabolite that is rapidly formed by selected human cytochrome P450s (CYP2J2, CYP3A4, CYP2D6, CYP2C8, and CYP2C9). Additionally, in vivo studies with mice administered with CBG supported these studies, where cyclo-CBG is the major metabolite as well. Spectroscopic binding studies along with docking and modeling of the CBG molecule near the heme in the active site of P450s confirmed these observations, pointing at the preferred site selectivity of CBG metabolism at the prenyl chain over other positions. Importantly, we found out that CBG and its oxidized CBG metabolites reduced inflammation in BV2 microglial cells stimulated with LPS. Overall, combining enzymological studies, mass spectrometry, and chemical synthesis, we showcase that CBG is rapidly metabolized by human P450s to form oxidized metabolites that are bioactive.


Asunto(s)
Cannabidiol , Cannabinoides , Animales , Humanos , Ratones , Cannabidiol/metabolismo , Cannabinoides/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo
3.
J Org Chem ; 87(9): 6075-6086, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35476908

RESUMEN

Despite centuries-long use of Cannabis in human culture and the now ubiquitous claims of its medicinal value, only a small handful of phytocannabinoids have been rigorously evaluated for pharmacological properties. While more than 100 distinct minor cannabinoids have been documented to date, a paucity of studies on their biological activities have been conducted due to a lack of routine access to sufficient quantities for testing. Herein, we report a strategy to prepare several structurally diverse minor cannabinoids deriving synthetically from readily available cannabidiol. Furthermore, we examined their ability to polarize activated microglia toward an anti-inflammatory phenotype using LPS-stimulated BV2 microglial cells. The minor cannabinoids studied, especially cannabielsoin, dehydrocannabielsoin, cannabimovone, and 3'-epicannabimovone, inhibited the production of prototypical pro-inflammatory biomarkers. This study represents the beginning of a systematic mapping of the roles minor cannabinoids may play in the medicinal properties of cannabis used for the treatment of pain and inflammation.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Antiinflamatorios/farmacología , Cannabidiol/farmacología , Cannabinoides/farmacología , Cannabinoides/uso terapéutico
4.
RSC Adv ; 11(19): 11714-11723, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35423635

RESUMEN

Dabbing and vaping cannabis extracts have gained large popularity in the United States as alternatives to cannabis smoking, but diversity in both available products and consumption habits make it difficult to assess consumer exposure to psychoactive ingredients and potentially harmful components. This work studies the how relative ratios of the two primary components of cannabis extracts, Δ9-tetrahydrocannabinol (THC) and terpenes, affect dosage of these and exposure to harmful or potentially harmful components (HPHCs). THC contains a monoterpene moiety and has been previously shown to emit similar volatile degradation products to terpenes when vaporized. Herein, the major thermal degradation mechanisms for THC and ß-myrcene are elucidated via analysis of their aerosol gas phase products using automated thermal desorption-gas chromatography-mass spectrometry with the aid of isotopic labelling and chemical mechanism modelling. Four abundant products - isoprene, 2-methyl-2-butene, 3-methylcrotonaldehyde, and 3-methyl-1-butene - are shown to derive from a common radical intermediate for both THC and ß-myrcene and these products comprise 18-30% of the aerosol gas phase. The relative levels of these four products are highly correlated with applied power to the e-cigarette, which indicates formation of these products is temperature dependent. Vaping THC-ß-myrcene mixtures with increasing % mass of ß-myrcene is correlated with less degradation of the starting material and a product distribution suggestive of a lower aerosolization temperature. By contrast, dabbing THC-ß-myrcene mixtures with increasing % mass of ß-myrcene is associated with higher levels of HPHCs, and isotopic labelling showed this is due to increased reactivity of ß-myrcene relative to THC.

5.
J Am Chem Soc ; 141(26): 10193-10198, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31244190

RESUMEN

Anthracyclines are archetypal representatives of the tetracyclic type II polyketide natural products that are widely used in cancer chemotherapy. Although the synthesis of this class of compounds has been a subject of several investigations, all known approaches are based on annulations, relying on the union of properly prefunctionalized building blocks. Herein, we describe a conceptually different approach using a polynuclear arene as a starting template, ideally requiring only functional decorations to reach the desired target molecule. Specifically, tetracene was converted to (±)-idarubicinone, the aglycone of the FDA approved anthracycline idarubicin, through the judicious orchestration of Co- and Ru-catalyzed arene oxidation and arenophile-mediated dearomative hydroboration. Such a global functionalization strategy, the combination of site-selective arene and dearomative functionalization, provided the key anthracycline framework in five operations and enabled rapid and controlled access to (±)-idarubicinone.


Asunto(s)
Idarrubicina/análogos & derivados , Naftacenos/química , Idarrubicina/síntesis química , Idarrubicina/química , Estructura Molecular , Estereoisomerismo
6.
European J Org Chem ; 2019(38): 6496-6503, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-33041648

RESUMEN

Rapid and reproducible access to a series of unique porphyrin and bacteriochlorin glycoconjugates, including meso-glycosylated porphyrins and bacteriochlorins, and beta-glycosylated porphyrins, via copper catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) is reported for the first time. The work presented highlights the system-dependent reaction conditions required for glycosylation to porphyrins and bacteriochlorins based on the unique electronic properties of each ring system. Attenuated reaction conditions were used to synthesize fifteen new glycosylated porphyrin and bacteriochlorin analogs in 74 - 99% yield, and were extended to solid support to produce the first oligo(amidoamine)-based porphyrin glycoconjugate. These compounds hold significant potential as next generation water soluble catalysts and photodynamic therapy/photodynamic inactivation (PDT/PDI) agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...