Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Faraday Discuss ; 244(0): 391-410, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37415486

RESUMEN

The study aims to understand the role of the transient bonding in the interplay between the structural and electronic changes in heteroleptic Cu(I) diimine diphosphine complexes. This is an emerging class of photosensitisers which absorb in the red region of the spectrum, whilst retaining a sufficiently long excited state lifetime. Here, the dynamics of these complexes are explored by transient absorption (TA) and time-resolved infrared (TRIR) spectroscopy, which reveal ultrafast intersystem crossing and structural distortion occurring. Two potential mechanisms affecting excited state decay in these complexes involve a transient formation of a solvent adduct, made possible by the opening up of the Cu coordination centre in the excited state due to structural distortion, and by a transient coordination of the O-atom of the phosphine ligand to the copper center. X-ray absorption studies of the ground electronic state have been conducted as a prerequisite for the upcoming X-ray spectroscopy studies which will directly determine structural dynamics. The potential for these complexes to be used in bimolecular applications is confirmed by a significant yield of singlet oxygen production.

2.
Sci Total Environ ; 838(Pt 1): 155908, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35588849

RESUMEN

Critical to identifying the risk of environmentally driven disease is an understanding of the cumulative impact of environmental conditions on human health. Here we describe the methodology used to develop an environmental burden index (EBI). The EBI is calculated at U.S. census tract level, a finer scale than many similar national-level tools. EBI scores are also stratified by tract land cover type as per the National Land Cover Database (NLCD), controlling for urbanicity. The EBI was developed over the course of four stages: 1) literature review to identify potential indicators, 2) data source acquisition and indicator variable construction, 3) index creation, and 4) stratification by land cover type. For each potential indicator, data sources were assessed for completeness, update frequency, and availability. These indicators were: (1) particulate matter (PM2.5), (2) ozone, (3) Superfund National Priority List (NPL) locations, (4) Toxics Release Inventory (TRI) facilities, (5) Treatment, Storage, and Disposal (TSD) facilities, (6) recreational parks, (7) railways, (8) highways, (9) airports, and (10) impaired water sources. Indicators were statistically normalized and checked for collinearity. For each indicator, we computed and summed percentile ranking scores to create an overall ranking for each tract. Tracts having the same plurality of land cover type form a 'peer' group. We re-ranked the tracts into percentiles within each peer group for each indicator. The percentile scores were combined for each tract to obtain a stratified EBI. A higher score reveals a tract with increased environmental burden relative to other tracts of the same peer group. We compared our results to those of related indices, finding good convergent validity between the overall EBI and CalEnviroScreen 4.0. The EBI has many potential applications for research and use as a tool to develop public health interventions at a granular scale.


Asunto(s)
Ozono , Material Particulado , Humanos , Material Particulado/análisis , Estados Unidos
3.
J Synchrotron Radiat ; 28(Pt 6): 1985-1995, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738954

RESUMEN

The Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source is a new dual-beam instrument for full-field imaging/tomography and powder diffraction. This instrument provides the user community with the capability to dynamically image 2D and 3D complex structures and perform phase identification and/or strain mapping using micro-diffraction. The aim is to enable in situ and in operando experiments that require spatially correlated results from both techniques, by providing measurements from the same specimen location quasi-simultaneously. Using an unusual optical layout, DIAD has two independent beams originating from one source that operate in the medium energy range (7-38 keV) and are combined at one sample position. Here, either radiography or tomography can be performed using monochromatic or pink beam, with a 1.4 mm × 1.2 mm field of view and a feature resolution of 1.2 µm. Micro-diffraction is possible with a variable beam size between 13 µm × 4 µm and 50 µm × 50 µm. One key functionality of the beamline is image-guided diffraction, a setup in which the micro-diffraction beam can be scanned over the complete area of the imaging field-of-view. This moving beam setup enables the collection of location-specific information about the phase composition and/or strains at any given position within the image/tomography field of view. The dual beam design allows fast switching between imaging and diffraction mode without the need of complicated and time-consuming mode switches. Real-time selection of areas of interest for diffraction measurements as well as the simultaneous collection of both imaging and diffraction data of (irreversible) in situ and in operando experiments are possible.

4.
J Phys Condens Matter ; 33(48)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34479225

RESUMEN

Small angle x-ray scattering and x-ray absorption fine structure are two techniques that have been employed at synchrotron sources ever since their inception. Over the course of the development of the techniques, the introduction of sample environments for added value experiments has grown dramatically. This article reviews past successes, current developments and an exploration of future possibilities for these two x-ray techniques with an emphasis on the developments in the United Kingdom between 1980-2020.

5.
J Phys Condens Matter ; 33(26)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-33902025

RESUMEN

Use ofin situcombined x-ray diffraction and x-ray absorption spectroscopy for the study of the thermal decomposition of zinc peroxide to zinc oxide is reported here. Comparison of data extracted from both x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) with thermo gravimetric analysis (TGA) enabled us to follow the nature of the conversion of ZnO2to ZnO. A temperature range between 230 °C and 350 °C appears to show that a very poorly crystalline ZnO is formed prior to the formation of an ordered ZnO material. Both the decrease in white line intensity in the Zn K-edge XANES and resulting lower coordination numbers estimated from analysis of the Zn K-edge data of ZnO heated at 500 °C, in comparison to bulk ZnO, suggest that the ZnO produced by this method has significant defects in the system.

6.
ACS Omega ; 5(23): 13664-13671, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32566831

RESUMEN

The formation of silver and Au@Ag core@shell nanoparticles via reduction of AgNO3 by trisodium citrate was followed using in situ X-ray absorption near-edge structure (XANES) spectroscopy and time-resolved UV-visible (UV-vis) spectroscopy. The XANES data were analyzed through linear combination fitting, and the reaction kinetics were found to be consistent with first-order behavior with respect to silver cations. For the Au@Ag nanoparticles, the UV-vis data of a lab-scale reaction showed a gradual shift in dominance between the gold- and silver-localized surface plasmon absorbance bands. Notably, throughout much of the reaction, distinct gold and silver contributions to the UV-vis spectra were observed; however, in the final product, the contributions were not distinct.

7.
J Am Chem Soc ; 141(29): 11471-11480, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31306004

RESUMEN

Complexes with weakly coordinating ligands are often formed in chemical reactions and can play key roles in determining the reactivity, particularly in catalytic reactions. Using time-resolved X-ray absorption fine structure (XAFS) spectroscopy in combination with time-resolved IR (TRIR) spectroscopy and tungsten hexacarbonyl, W(CO)6, we are able to structurally characterize the formation of an organometallic alkane complex, determine the W-C distances, and monitor the reactivity with silane to form an organometallic silane complex. Experiments in perfluorosolvents doped with xenon afford initially the corresponding solvated complex, which is sufficiently reactive in the presence of Xe that we can then observe the coordination of Xe to the metal center, providing a unique insight into the metal-xenon bonding. These results offer a step toward elucidating the structure, bonding, and chemical reactivity of transient species by X-ray absorption spectroscopy, which has sensitivity to small structural changes. The XAFS results indicate that the bond lengths of metal-alkane (W-H-C) bond in W(CO)5(heptane) as 3.07 (±0.06) Å, which is longer than the calculated W-C (2.86 Å) for binding of the primary C-H, but shorter than the calculated W-C (3.12 Å) for the secondary C-H. A statistical average of the calculated W-C alkane bond lengths is 3.02 Å, and comparison of this value indicates that the value derived from the XAFS measurements is averaged over coordination of all C-H bonds consistent with alkane chain walking. Photolysis of W(CO)6 in the presence of HSiBu3 allows the conversion of W(CO)5(heptane) to W(CO)5(HSiBu3) with an estimated W-Si distance of 3.20 (±0.03) Å. Time-resolved TRIR and XAFS experiments following photolysis of W(CO)6 in perfluoromethylcyclohexane (PFMCH) allows the characterization of W(CO)5(PFMCH) with a W-F distance of 2.65 (±0.06) Å, and doping PFMCH with Xe allows the characterization of W(CO)5Xe with a W-Xe bond length of 3.10 (±0.02) Å.

8.
Artículo en Inglés | MEDLINE | ID: mdl-31083298

RESUMEN

African Americans, other minorities and underserved populations are consistently under- represented in clinical trials. Such underrepresentation results in a gap in the evidence base, and health disparities. The ABC Cardiovascular Implementation Study (CVIS) is a comprehensive prospective cohort registry that integrates social determinants of health. ABC CVIS uses real world clinical practice data to address critical gaps in care by facilitating robust participation of African Americans and other minorities in clinical trials. ABC CVIS will include diverse patients from collaborating ABC member private practices, as well as patients from academic health centers and Federally Qualified Health Centers (FQHCs). This paper describes the rationale and design of the ABC CVIS Registry. The registry will: (1) prospectively collect socio-demographic, clinical and biospecimen data from enrolled adults, adolescents and children with prioritized cardiovascular diseases; (2) Evaluate the safety and clinical outcomes of new therapeutic agents, including post marketing surveillance and pharmacovigilance; (3) Support National Institutes of Health (NIH) and industry sponsored research; (4) Support Quality Measures standards from the Center for Medicare and Medicaid Services (CMS) and Commercial Health Plans. The registry will utilize novel data and technology tools to facilitate mobile health technology application programming interface (API) to health system or practice electronic health records (EHR). Long term, CVIS will become the most comprehensive patient registry for underserved diverse patients with cardiovascular disease (CVD) and co morbid conditions, providing real world data to address health disparities. At least 10,000 patients will be enrolled from 50 sites across the United States.


Asunto(s)
Negro o Afroamericano/estadística & datos numéricos , Determinantes Sociales de la Salud/estadística & datos numéricos , Poblaciones Vulnerables/estadística & datos numéricos , Georgia , Humanos , Estudios Prospectivos , Sistema de Registros
9.
Ethn Dis ; 29(Suppl 1): 135-144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906162

RESUMEN

The Research Centers in Minority Institutions (RCMI) program was established by the US Congress to support the development of biomedical research infrastructure at minority-serving institutions granting doctoral degrees in the health professions or in a health-related science. RCMI institutions also conduct research on diseases that disproportionately affect racial and ethnic minorities (ie, African Americans/Blacks, American Indians and Alaska Natives, Hispanics, Native Hawaiians and Other Pacific Islanders), those of low socioeconomic status, and rural persons. Quantitative metrics, including the numbers of doctoral science degrees granted to underrepresented students, NIH peer-reviewed research funding, peer-reviewed publications, and numbers of racial and ethnic minorities participating in sponsored research, demonstrate that RCMI grantee institutions have made substantial progress toward the intent of the Congressional legislation, as well as the NIH/NIMHD-linked goals of addressing workforce diversity and health disparities. Despite this progress, nationally, many challenges remain, including persistent disparities in research and career development awards to minority investigators. The continuing underrepresentation of minority investigators in NIH-sponsored research across multiple disease areas is of concern, in the face of unrelenting national health inequities. With the collaborative network support by the RCMI Translational Research Network (RTRN), the RCMI community is uniquely positioned to address these challenges through its community engagement and strategic partnerships with non-RCMI institutions. Funding agencies can play an important role by incentivizing such collaborations, and incorporating metrics for research funding that address underrepresented populations, workforce diversity and health equity.


Asunto(s)
Investigación Conductal , Investigación Biomédica , Grupos Minoritarios , Salud de las Minorías , Investigación Biomédica Traslacional , Investigación Conductal/métodos , Investigación Conductal/organización & administración , Investigación Biomédica/métodos , Investigación Biomédica/organización & administración , Diversidad Cultural , Etnicidad/educación , Etnicidad/estadística & datos numéricos , Disparidades en el Estado de Salud , Humanos , Grupos Minoritarios/educación , Grupos Minoritarios/estadística & datos numéricos , Salud de las Minorías/educación , Salud de las Minorías/etnología , Investigadores , Apoyo a la Investigación como Asunto , Investigación Biomédica Traslacional/métodos , Investigación Biomédica Traslacional/organización & administración , Estados Unidos , Recursos Humanos
10.
ACS Catal ; 8(9): 8255-8262, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30221029

RESUMEN

The promotional effect of H2 on the oxidation of CO is of topical interest, and there is debate over whether this promotion is due to either thermal or chemical effects. As yet there is no definitive consensus in the literature. Combining spatially resolved mass spectrometry and X-ray absorption spectroscopy (XAS), we observe a specific environment of the active catalyst during CO oxidation, having the same specific local coordination of the Pd in both the absence and presence of H2. In combination with Temporal Analysis of Products (TAP), performed under isothermal conditions, a mechanistic insight into the promotional effect of H2 was found, providing clear evidence of nonthermal effects in the hydrogen-promoted oxidation of carbon monoxide. We have identified that H2 promotes the Langmuir-Hinshelwood mechanism, and we propose this is linked to the increased interaction of O with the Pd surface in the presence of H2. This combination of spatially resolved MS and XAS and TAP studies has provided previously unobserved insights into the nature of this promotional effect.

11.
J Acquir Immune Defic Syndr ; 73(3): 323-331, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27763996

RESUMEN

OBJECTIVE: A recent HIV outbreak in a rural network of persons who inject drugs (PWID) underscored the intersection of the expanding epidemics of opioid abuse, unsterile injection drug use (IDU), and associated increases in hepatitis C virus (HCV) infections. We sought to identify US communities potentially vulnerable to rapid spread of HIV, if introduced, and new or continuing high rates of HCV infections among PWID. DESIGN: We conducted a multistep analysis to identify indicator variables highly associated with IDU. We then used these indicator values to calculate vulnerability scores for each county to identify which were most vulnerable. METHODS: We used confirmed cases of acute HCV infection reported to the National Notifiable Disease Surveillance System, 2012-2013, as a proxy outcome for IDU, and 15 county-level indicators available nationally in Poisson regression models to identify indicators associated with higher county acute HCV infection rates. Using these indicators, we calculated composite index scores to rank each county's vulnerability. RESULTS: A parsimonious set of 6 indicators were associated with acute HCV infection rates (proxy for IDU): drug-overdose deaths, prescription opioid sales, per capita income, white, non-Hispanic race/ethnicity, unemployment, and buprenorphine prescribing potential by waiver. Based on these indicators, we identified 220 counties in 26 states within the 95th percentile of most vulnerable. CONCLUSIONS: Our analysis highlights US counties potentially vulnerable to HIV and HCV infections among PWID in the context of the national opioid epidemic. State and local health departments will need to further explore vulnerability and target interventions to prevent transmission.


Asunto(s)
Consumidores de Drogas/estadística & datos numéricos , Infecciones por VIH/complicaciones , Infecciones por VIH/transmisión , Hepatitis C/complicaciones , Hepatitis C/transmisión , Abuso de Sustancias por Vía Intravenosa/complicaciones , Adulto , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/estadística & datos numéricos , Femenino , Infecciones por VIH/prevención & control , Hepatitis C/prevención & control , Humanos , Masculino , Vigilancia de la Población , Medición de Riesgo , Factores de Riesgo , Población Rural , Estados Unidos/epidemiología , Poblaciones Vulnerables
13.
Chem Sci ; 6(8): 4940-4945, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30155002

RESUMEN

Nanoparticulate gold has emerged as a promising catalyst for diverse mild and efficient selective aerobic oxidations. However, the mechanism of such atom-economical transformations, and synergy with functional supports, remains poorly understood. Alkali-free Mg-Al hydrotalcites are excellent solid base catalysts for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furan dicarboxylic acid (FDCA), but only in concert with high concentrations of metallic gold nanoparticles. In the absence of soluble base, competitive adsorption between strongly-bound HMF and reactively-formed oxidation intermediates site-blocks gold. Aqueous NaOH dramatically promotes solution phase HMF activation, liberating free gold sites able to activate the alcohol function within the metastable 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) reactive intermediate. Synergistic effects between moderate strength base sites within alkali-free hydrotalcites and high gold surface concentrations can afford highly selective and entirely heterogeneous catalysts for aqueous phase aldehyde and alcohol cascade oxidations pertinent to biomass transformation.

14.
Chemphyschem ; 15(14): 3049-59, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25044889

RESUMEN

The effects of ceria and zirconia on the structure-function properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ-Al2O3) during CO exposure are described. Ceria and zirconia are introduced through two preparation methods: 1) ceria is deposited on γ-Al2O3 from [Ce(acac)3] and rhodium metal is subsequently added, and 2) through the controlled surface modification (CSM) technique, which involves the decomposition of [M(acac)x] (M=Ce, x=3; M=Zr, x=4) on Rh/γ-Al2O3. The structure-function correlations of ceria and/or zirconia-doped rhodium catalysts are investigated by diffuse reflectance infrared Fourier-transform spectroscopy/energy-dispersive extended X-ray absorption spectroscopy/mass spectrometry (DRIFTS/EDE/MS) under time-resolved, in situ conditions. CeOx and ZrO2 facilitate the protection of Rh particles against extensive oxidation in air and CO. Larger Rh core particles of ceriated and zirconiated Rh catalysts prepared by CSM are observed and compared with Rh/γ-Al2O3 samples, whereas supported Rh particles are easily disrupted by CO forming mononuclear Rh geminal dicarbonyl species. DRIFTS results indicate that, through the interaction of CO with ceriated Rh particles, a significantly larger amount of linear CO species form; this suggests the predominance of a metallic Rh phase.

15.
Chemphyschem ; 14(15): 3606-17, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23943563

RESUMEN

The effects of the addition of ceria and zirconia on the structural properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ-Al2O3) are studied. Ceria and zirconia are deposited by using two preparation methods. Method I involves the deposition of ceria on γ-Al2O3 from Ce(acac)3, and the rhodium metal is subsequently added, whereas method II is based on a controlled surface reaction technique, that is, the decomposition of metal-organic M(acac)x (in which M=Ce, x=3 and M=Zr, x=4) on Rh/γ-Al2O3. The structures of the prepared catalyst materials are characterized ex situ by using N2 physisorption, transmission electron microscopy, high-angle annular dark-field scanning transmission election microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure spectroscopy (XAFS). All supported rhodium systems readily oxidize in air at room temperature. By using ceriated and zirconiated precursors, a larger rhodium-based metallic core fraction is obtained in comparison to the undoped rhodium catalysts, suggesting that ceria and zirconia protect the rhodium particles against extensive oxidation. XPS results indicate that after the calcination and reduction treatments, a small amount of chlorine is retained on the support of all rhodium catalysts. EXAFS analysis shows significant Rh-Cl interactions for Rh/Al2O3 and Rh/CeOx /Al2O3 (method I) catalysts. After reaction with H2/He in situ, for series of samples with 1.6 wt % Rh, the EXAFS first shell analysis affords a mean size of approximately 30 atoms. A broader spread is evident with a 4 wt % rhodium loading (ca. 30-110 atoms), with the incorporation of zirconium providing the largest particle sizes.

16.
Inorg Chem ; 52(14): 8171-82, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23815225

RESUMEN

Mixed-metal iron-vanadium analogues of the 1,4-benzenedicarboxylate (BDC) metal-organic framework MIL-53 have been synthesized solvothermally in N,N'-dimethylformamide (DMF) from metal chlorides using initial Fe:V ratios of 2:1 and 1:1. At 200 °C and short reaction time (1 h), materials (Fe,V)(II/III)BDC(DMF(1-x)F(x)) crystallize directly, whereas the use of longer reaction times (3 days) at 170 °C yields phases of composition [(Fe,V)(III)0.5(Fe,V)0.5(II)(BDC)(OH,F)](0.5-)·0.5DMA(+) (DMA = dimethylammonium). The identity of the materials is confirmed using high-resolution powder X-ray diffraction, with refined unit cell parameters compared to known pure iron analogues of the same phases. The oxidation states of iron and vanadium in all samples are verified using X-ray absorption near edge structure (XANES) spectroscopy at the metal K-edges. This shows that in the two sets of materials each of the vanadium and the iron centers are present in both +2 and +3 oxidation states. The local environment and oxidation state of iron is confirmed by (57)Fe Mössbauer spectrometry. Infrared and Raman spectroscopies as a function of temperature allowed the conditions for removal of extra-framework species to be identified, and the evolution of µ2-hydroxyls to be monitored. Thus calcination of the mixed-valent, mixed-metal phases [(Fe,V)(III)0.5(Fe,V)0.5(II)(BDC)(OH,F)](0.5-)·0.5DMA(+) yields single-phase MIL-53-type materials, (Fe,V)(III)(BDC)(OH,F). The iron-rich, mixed-metal MIL-53 shows structural flexibility that is distinct from either the pure Fe material or the pure V material, with a thermally induced pore opening upon heating that is reversible upon cooling. In contrast, the material with a Fe:V content of 1:1 shows an irreversible expansion upon heating, akin to the pure vanadium analogue, suggesting the presence of some domains of vanadium-rich regions that can be permanently oxidized to V(IV).

17.
J Phys Chem B ; 117(24): 7381-7, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23718738

RESUMEN

Energy dispersive X-ray absorption spectroscopy (ED-XAS), in which the whole XAS spectrum is acquired simultaneously, has been applied to reduce the real-time for acquisition of spectra of photoinduced excited states by using a germanium microstrip detector gated around one X-ray bunch of the ESRF (100 ps). Cu K-edge XAS was used to investigate the MLCT states of [Cu(dmp)2](+) (dmp =2,9-dimethyl-1,10-phenanthroline) and [Cu(dbtmp)2](+) (dbtmp =2,9-di-n-butyl-3,4,7,8-tetramethyl-1,10-phenanthroline) with the excited states created by excitation at 450 nm (10 Hz). The decay of the longer lived complex with bulky ligands, was monitored for up to 100 ns. DFT calculations of the longer lived MLCT excited state of [Cu(dbp)2](+) (dbp =2,9-di-n-butyl-1,10-phenanthroline) with the bulkier diimine ligands, indicated that the excited state behaves as a Jahn-Teller distorted Cu(II) site, with the interligand dihedral angle changing from 83 to 60° as the tetrahedral coordination geometry flattens and a reduction in the Cu-N distance of 0.03 Å.


Asunto(s)
Cobre/química , Compuestos Organometálicos/química , Fenantrolinas/química , Teoría Cuántica , Termodinámica , Electrones , Compuestos Organometálicos/síntesis química , Espectroscopía de Absorción de Rayos X
18.
Dalton Trans ; 42(6): 2213-23, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23192302

RESUMEN

Scandium trichloride complexes with tridentate N(3)- and S(2)N-donor ligands (L(3)) have been synthesised and characterised by IR, (1)H, (13)C{(1)H} and (45)Sc NMR spectroscopy, microanalysis, and solid state and solution XAFS spectroscopy. Catalytic testing of a subset of these complexes with ethene has been undertaken in chlorobenzene with MMAO-3A and PMAO-IP at 60 °C and 40 bar ethene, giving low activity ethene polymerisation. The reactions of these complexes with MeLi and AlMe(3) were studied by (1)H, (13)C{(1)H}, (27)Al and (45)Sc NMR spectroscopy and in situ via Sc K-edge XAFS spectroscopy. Three or four mol. equivalents of MeLi react with [ScCl(3)(Me(3)-tacn)] in THF solution to form [ScMe(3)(Me(3)-tacn)] cleanly, while complexes of type [ScCl(3)(R-SNS)] {R-SNS = HN(CH(2)CH(2)SC(10)H(21))(2)} form two different species proposed to be [ScMe(3)(R-SN(Li)S)] and [ScMe(2)(R-SN(-)S)]. In contrast, in situ(45)Sc NMR and Sc K-edge XAFS spectroscopic studies of the reaction of [ScCl(3)(Me(3)-tacn)] with 10 mol. equivalents of AlMe(3) strongly suggest that alkylation at the Sc(III) centre does not occur, instead retaining the Cl(3)N(3) coordination environment and most likely forming Sc-Cl-AlMe(3) bridging interactions. Similar studies on [ScCl(3)(decyl-SNS)] with 10 mol. equivalents of AlMe(3) are also consistent with this, indicating that alkylation at the Sc centre does not occur except in the presence of co-catalyst [Ph(3)C][Al{OC(CF(3))(3)}(4)] and the α-alkene, hex-1-ene.

19.
Sci Rep ; 2: 880, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23198088

RESUMEN

Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO(2) emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from 'breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO(2)/H(2)O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation.


Asunto(s)
Carbonato de Calcio/química , Sulfato de Calcio/química , Silanos/química , Lluvia Ácida , Materiales de Construcción/análisis , Contaminantes Ambientales/química , Ácidos Grasos/química , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Modelos Químicos , Óxidos/química , Tamaño de la Partícula , Material Particulado/química , Sulfatos/química , Compuestos de Azufre/química , Ácidos Sulfúricos/química , Propiedades de Superficie , Difracción de Rayos X
20.
Nat Commun ; 3: 1050, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22968696

RESUMEN

Methanol is an important platform molecule for chemical synthesis and its high energy density also renders it a good candidate as a cleaner transportation fuel. At present, methanol is manufactured from natural gas via the indirect syn-gas route. Here we show that ethylene glycol, a versatile chemical derived from biomass or fossil fuels, can be directly converted to methanol in hydrogen with high selectivity over a Pd/Fe(2)O(3) co-precipitated catalyst. This opens up a possibility for diversification in natural resources for energy-starved countries. The working catalyst contains extremely small 'PdFe' clusters and metal adatoms on defective iron oxide to give the required metal-support interaction for the novel synthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...