Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464092

RESUMEN

Human cytomegalovirus (HCMV) encodes four viral Fc-gamma receptors (vFcγRs) that counteract antibody-mediated activation in vitro , but their role in infection and pathogenesis is unknown. To examine the in vivo function of vFcγRs in animal hosts closely related to humans, we identified and characterized vFcγRs encoded by rhesus CMV (RhCMV). We demonstrate that Rh05, Rh152/151 and Rh173 represent the complete set of RhCMV vFcγRs, each displaying functional similarities to their respective HCMV orthologs with respect to antagonizing host FcγR activation in vitro . When RhCMV-naïve rhesus macaques were infected with vFcγR-deleted RhCMV, peak plasma viremia levels and anti-RhCMV antibody responses were comparable to wildtype infections. However, the duration of plasma viremia was significantly shortened in immunocompetent, but not in CD4+ T cell-depleted animals. Since vFcγRs were not required for superinfection, we conclude that vFcγRs delay control by virus-specific adaptive immune responses, particularly antibodies, during primary infection.

2.
PLoS Negl Trop Dis ; 17(11): e0011742, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983245

RESUMEN

Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes debilitating and persistent arthritogenic disease. While MAYV was previously reported to infect non-human primates (NHP), characterization of MAYV pathogenesis is currently lacking. Therefore, in this study we characterized MAYV infection and immunity in rhesus macaques. To inform the selection of a viral strain for NHP experiments, we evaluated five MAYV strains in C57BL/6 mice and showed that MAYV strain BeAr505411 induced robust tissue dissemination and disease. Three male rhesus macaques were subcutaneously challenged with 105 plaque-forming units of this strain into the arms. Peak plasma viremia occurred at 2 days post-infection (dpi). NHPs were taken to necropsy at 10 dpi to assess viral dissemination, which included the muscles and joints, lymphoid tissues, major organs, male reproductive tissues, as well as peripheral and central nervous system tissues. Histological examination demonstrated that MAYV infection was associated with appendicular joint and muscle inflammation as well as presence of perivascular inflammation in a wide variety of tissues. One animal developed a maculopapular rash and two NHP had viral RNA detected in upper torso skin samples, which was associated with the presence of perivascular and perifollicular lymphocytic aggregation. Analysis of longitudinal peripheral blood samples indicated a robust innate and adaptive immune activation, including the presence of anti-MAYV neutralizing antibodies with activity against related Una virus and chikungunya virus. Inflammatory cytokines and monocyte activation also peaked coincident with viremia, which was well supported by our transcriptomic analysis highlighting enrichment of interferon signaling and other antiviral processes at 2 days post MAYV infection. The rhesus macaque model of MAYV infection recapitulates many of the aspects of human infection and is poised to facilitate the evaluation of novel therapies and vaccines targeting this re-emerging virus.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Virus Chikungunya , Animales , Ratones , Masculino , Macaca mulatta , Viremia , Ratones Endogámicos C57BL , Anticuerpos Antivirales
3.
PLoS Pathog ; 19(10): e1011682, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782657

RESUMEN

Human cytomegalovirus (HCMV) encodes multiple putative G protein-coupled receptors (GPCRs). US28 functions as a viral chemokine receptor and is expressed during both latent and lytic phases of virus infection. US28 actively promotes cellular migration, transformation, and plays a major role in mediating viral latency and reactivation; however, knowledge about the interaction partners involved in these processes is still incomplete. Herein, we utilized a proximity-dependent biotinylating enzyme (TurboID) to characterize the US28 interactome when expressed in isolation, and during both latent (CD34+ hematopoietic progenitor cells) and lytic (fibroblasts) HCMV infection. Our analyses indicate that the US28 signalosome converges with RhoA and EGFR signal transduction pathways, sharing multiple mediators that are major actors in processes such as cellular proliferation and differentiation. Integral members of the US28 signaling complex were validated in functional assays by immunoblot and small-molecule inhibitors. Importantly, we identified RhoGEFs as key US28 signaling intermediaries. In vitro latency and reactivation assays utilizing primary CD34+ hematopoietic progenitor cells (HPCs) treated with the small-molecule inhibitors Rhosin or Y16 indicated that US28 -RhoGEF interactions are required for efficient viral reactivation. These findings were recapitulated in vivo using a humanized mouse model where inhibition of RhoGEFs resulted in a failure of the virus to reactivate. Together, our data identifies multiple new proteins in the US28 interactome that play major roles in viral latency and reactivation, highlights the utility of proximity-sensor labeling to characterize protein interactomes, and provides insight into targets for the development of novel anti-HCMV therapeutics.


Asunto(s)
Citomegalovirus , Transducción de Señal , Animales , Ratones , Humanos , Citomegalovirus/fisiología , Latencia del Virus , Diferenciación Celular , Células Madre Hematopoyéticas
4.
PLoS Negl Trop Dis ; 17(3): e0011154, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36913428

RESUMEN

Infections with Chikungunya virus, a mosquito-borne alphavirus, cause an acute febrile syndrome often followed by chronic arthritis that persists for months to years post-infection. Neutralizing antibodies are the primary immune correlate of protection elicited by infection, and the major goal of vaccinations in development. Using convalescent blood samples collected from both endemic and non-endemic human subjects at multiple timepoints following suspected or confirmed chikungunya infection, we identified antibodies with broad neutralizing properties against other alphaviruses within the Semliki Forest complex. Cross-neutralization generally did not extend to the Venezuelan Equine Encephalitis virus (VEEV) complex, although some subjects had low levels of VEEV-neutralizing antibodies. This suggests that broadly neutralizing antibodies elicited following natural infection are largely complex restricted. In addition to serology, we also performed memory B-cell analysis, finding chikungunya-specific memory B-cells in all subjects in this study as remotely as 24 years post-infection. We functionally assessed the ability of memory B-cell derived antibodies to bind to chikungunya virus, and related Mayaro virus, as well as the highly conserved B domain of the E2 glycoprotein thought to contribute to cross-reactivity between related Old-World alphaviruses. To specifically assess the role of the E2 B domain in cross-neutralization, we depleted Mayaro and Chikungunya virus E2 B domain specific antibodies from convalescent sera, finding E2B depletion significantly decreases Mayaro virus specific cross-neutralizing antibody titers with no significant effect on chikungunya virus neutralization, indicating that the E2 B domain is a key target of cross-neutralizing and potentially cross-protective neutralizing antibodies.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Humanos , Anticuerpos ampliamente neutralizantes , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteínas
5.
Mitochondrion ; 68: 15-24, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371074

RESUMEN

Photobiomodulation is a term for using low-power red to near-infrared light to stimulate a variety of positive biological effects. Though the scientific and clinical acceptance of PBM as a therapeutic intervention has increased dramatically in recent years, the molecular underpinnings of the effect remain poorly understood. The putative chromophore for PBM effects is cytochrome c oxidase. It is postulated that light absorption at cytochrome c oxidase initiates a signaling cascade involving ATP and generation of reactive oxygen species (ROS), which subsequently results in improved cellular robustness. However, this hypothesis is largely based on inference and indirect evidence, and the precise molecular mechanisms that govern how photon absorption leads to these downstream effects remain poorly understood. We conducted low-power PBM-type light exposures of isolated mitochondria to 808 nm NIR light, at a number of irradiances. NIR exposure was found to enhance the activity of complex IV, depress the activity of complex III, and had no effect on the activity of complex II. Further, examining the dose-response of complex IV we found NIR enhancement did not exhibit irradiance reciprocity, indicating the effect on complex IV may not have direct photochemical basis. In summary, this research presents a novel method to interrogate the earliest stages of PBM in the mitochondria, and a unique window into the corresponding molecular mechanism(s) of induction.


Asunto(s)
Complejo IV de Transporte de Electrones , Terapia por Luz de Baja Intensidad , Complejo IV de Transporte de Electrones/metabolismo , Transporte de Electrón , Terapia por Luz de Baja Intensidad/métodos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo
6.
J Biomed Opt ; 27(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35362274

RESUMEN

SIGNIFICANCE: Physics-based models supply simulated temperature rises to photothermal damage rate models and provide comprehensive risk assessments for laser-induced damage. As the physics-based models continue to be refined, the damage rate models have not advanced. This peculiar lack of improvement is counterintuitive considering the damage integral (Ω), originally derived for isothermal heating events, and fails to accurately represent the nonisothermal heating from short laser exposures. AIM: Derive a nonisothermal form of the damage integral and predict more accurately the damage induced by short laser exposures, as well as identify the role of heating rate in laser damage. APPROACH: From first principles, we derived a version of the damage integral specific to the shape of thermal profiles rather than the square function provided by Arrhenius plots. We used previously published threshold thermal profiles, where all nonisothermal frequency factors (Anon) solved all Ωnon values to unity. Nonisothermal correction factors correct isothermal Aiso values. RESULTS: The Ea values were identical for both the isothermal and nonisothermal conventions. Correction factor values for Ωiso ranged from 0.0 (20-s exposures at thermal steady state) to -0.93 (0.05-s exposures). Based on empirical results, we have derived a two-dimensional empirical formula that predicts the heating rate as a function of exposure duration and ambient temperature. Threshold peak temperatures (Tpthr) and threshold critical temperatures are mathematically determined without thermal profiles when appropriate Ea and Anon values are established. CONCLUSIONS: We have identified a modified damage integral that does not rely on the Arrhenius plot and provides a value for the frequency factor (A) that accounts for the nonisothermal nature of short laser exposures. The method, validated in our in vitro retinal model, requires thermal profiles recorded under threshold conditions, such as at minimum visible lesions or the boundary of cell death. The method is a new option for laser damage modelers.


Asunto(s)
Calefacción , Rayos Láser , Retina , Temperatura
7.
Biomed Opt Express ; 12(11): 7082-7091, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34858701

RESUMEN

The electronic or molecular mechanisms that initiate photobiomodulation (PBM) in cells are not yet fully understood. The porcine complex III (C-III) of the electron transport chain was characterized with transient absorption spectroscopy (TAS). We then applied our recently developed continuous wave laser coupled TAS procedure (CW-TAS) to investigate the effect of red light irradiances on the heme dynamics of C-III in its c1 reduced state. The time constants were found to be 3.3 ± 0.3 ps for vibrational cooling of the oxidized state and 4.9 ± 0.4 ps for rebinding of the photodissociated axial ligand of the c1 reduced state. The analysis of the CW-TAS procedure yielded no significant changes in the C-III heme dynamics. We rule out the possibility of 635 nm CW light at 4.7 mW/cm2 inducing a PBM effect on the heme dynamic of C-III, specifically with the photodissociation of its axial ligand.

8.
J Photochem Photobiol B ; 222: 112271, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34364080

RESUMEN

Photobiomodulation (PBM) describes the use of low irradiance light in the red to near-infrared wavelength range to stimulate biological effects in tissue, and many biological and spectroscopic techniques are used to study PBM. However, these techniques focus on the products or downstream effects rather than the electronic transitions that initiate the PBM processes. This study presents a novel approach to studying low irradiance light exposures on individual proteins and/or protein complexes by combining a continuous wave (CW) laser diode with femtosecond transient absorption spectroscopy (TAS), coined here as CW-TAS, and tests the system on reduced cytochrome c (Cyt c) for proof of principle. TAS was conducted using a 532-nm excitation pump beam and a 350-600 nm supercontinuum probe. CW laser diodes with wavelengths of 450 nm, 635 nm, and 808 nm were interchangeably fiber coupled into the HELIOS Fire. Samples of Cyt c were tested by TAS using a pump power of 15 µW, both with and without CW exposure. CW exposures were carried out with irradiances of 1.60 and 3.20 mW/cm2, except for 808 nm, which was only tested at 1.60 mW/cm2. Both kinetic and global analyses were performed on the TAS data and the time constants for sets with and without CW exposures were compared. The TAS data for Cyt c with the full dosage of CW exposures did not alter the TAS data distinguishably from the control data. No new electronic transient signals were observed beyond the background when testing Cyt c with the CW exposures. Kinetic analysis confirmed that existing transients did not deviate beyond uncertainty. Global time constants for Cyt c were calculated to be 0.25 ± 0.03 ps and 5.1 ± 0.3 ps for the control study, and the time constants for the CW exposed Cyt c were not significantly different. This study concludes that CW irradiation, at doses delivered, does not alter the transient absorption data of Cyt c. The CW-TAS method provides a new tool for studying PBM effects in other proteins and protein complexes that might respond to the CW wavelengths, such as Complex IV, in future studies.


Asunto(s)
Láseres de Semiconductores , Espectrofotometría/métodos , Citocromos c/química , Cinética , Luz , Oxidación-Reducción
9.
Antimicrob Agents Chemother ; 65(9): e0024421, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34152810

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a reemerging alphavirus that can cause encephalitis resulting in severe human morbidity and mortality. Using a high-throughput cell-based screen, we identified a quinolinone compound that protected against VEEV-induced cytopathic effects. Analysis of viral replication in cells identified several quinolinone compounds with potent inhibitory activity against vaccine and virulent strains of VEEV. These quinolinones also displayed inhibitory activity against additional alphaviruses, such as Mayaro virus and Ross River virus, although the potency was greatly reduced. Time-of-addition studies indicated that these compounds inhibit the early-to-mid stage of viral replication. Deep sequencing and reverse genetics studies identified two unique resistance mutations in the nsP2 gene (Y102S/C; stalk domain) that conferred VEEV resistance on this chemical series. Moreover, introduction of a K102Y mutation into the nsP2 gene enhanced the sensitivity of chikungunya virus (CHIKV) to this chemical series. Computational modeling of CHIKV and VEEV nsP2 identified a highly probable docking alignment for the quinolinone compounds that require a tyrosine residue at position 102 within the helicase stalk domain. These studies identified a class of compounds with antiviral activity against VEEV and other alphaviruses and provide further evidence that therapeutics targeting nsP2 may be useful against alphavirus infection.


Asunto(s)
Virus Chikungunya , Virus de la Encefalitis Equina Venezolana , Quinolonas , Animales , Antivirales/farmacología , Virus de la Encefalitis Equina Venezolana/genética , Caballos , Humanos , Quinolonas/farmacología , Replicación Viral
10.
PLoS Negl Trop Dis ; 15(4): e0009308, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33793555

RESUMEN

Mayaro virus (MAYV) is an alphavirus endemic to South and Central America associated with sporadic outbreaks in humans. MAYV infection causes severe joint and muscle pain that can persist for weeks to months. Currently, there are no approved vaccines or therapeutics to prevent MAYV infection or treat the debilitating musculoskeletal inflammatory disease. In the current study, a prophylactic MAYV vaccine expressing the complete viral structural polyprotein was developed based on a non-replicating human adenovirus V (AdV) platform. Vaccination with AdV-MAYV elicited potent neutralizing antibodies that protected WT mice against MAYV challenge by preventing viremia, reducing viral dissemination to tissues and mitigating viral disease. The vaccine also prevented viral-mediated demise in IFN⍺R1-/- mice. Passive transfer of immune serum from vaccinated animals similarly prevented infection and disease in WT mice as well as virus-induced demise of IFN⍺R1-/- mice, indicating that antiviral antibodies are protective. Immunization with AdV-MAYV also generated cross-neutralizing antibodies against two related arthritogenic alphaviruses-chikungunya and Una viruses. These cross-neutralizing antibodies were protective against lethal infection in IFN⍺R1-/- mice following challenge with these heterotypic alphaviruses. These results indicate AdV-MAYV elicits protective immune responses with substantial cross-reactivity and protective efficacy against other arthritogenic alphaviruses. Our findings also highlight the potential for development of a multi-virus targeting vaccine against alphaviruses with endemic and epidemic potential in the Americas.


Asunto(s)
Adenoviridae/genética , Alphavirus/inmunología , Fiebre Chikungunya/prevención & control , Virus Chikungunya/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Protección Cruzada/inmunología , Modelos Animales de Enfermedad , Femenino , Ingeniería Genética/métodos , Vectores Genéticos/genética , Inmunización , Masculino , Ratones , Ratones Endogámicos C57BL , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
11.
Virology ; 557: 23-33, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33601113

RESUMEN

Herpesviruses encode multiple glycoproteins required for different stages of viral attachment, fusion, and envelopment. The protein encoded by the human cytomegalovirus (HCMV) open reading frame UL116 forms a stable complex with glycoprotein H that is incorporated into virions. However, the function of this complex remains unknown. Herein, we characterize R116, the rat CMV (RCMV) putative homolog of UL116. Two R116 transcripts were identified in fibroblasts with three proteins expressed with molecular weights of 42, 58, and 82 kDa. R116 is N-glycosylated, expressed with late viral gene kinetics, and is incorporated into the virion envelope. RCMV lacking R116 failed to result in productive infection of fibroblasts and siRNA knockdown of R116 substantially reduced RCMV infectivity. Complementation in trans of an R116-deficient virus restored ability of the virus to infect fibroblasts. Finally, UL116 knockdown also decreased HCMV infectivity indicating that R116 and UL116 both contribute to viral infectivity.


Asunto(s)
Citomegalovirus/genética , Fibroblastos/virología , Sistemas de Lectura Abierta/genética , Proteínas del Envoltorio Viral/genética , Virión/química , Animales , Citomegalovirus/química , Glicosilación , Humanos , ARN Bicatenario , Ratas , Acoplamiento Viral , Internalización del Virus
12.
J Biophotonics ; 14(4): e202000384, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33438837

RESUMEN

Dysfunctional mitochondrial activity can lead to a variety of different diseases. As such, there exists a need to quantify changes in mitochondria function as it relates to these specific diseased states. Here, we present the use of resonance Raman (RR) spectroscopy as a tool to determine changes in isolated mitochondrial activity. RR spectroscopy, using 532 nm as the excitation source, specifically provides information on the reduction and oxidation (RedOx) state of cytochrome c, which is determined by the activity of protein complexes in the electron transport chain (ETC). In this model, injection of the substrate succinate into the mitochondrial sample is used to drive the ETC, which causes a subsequent change in cytochrome c RedOx state. This change in RedOx state is tracked by RR spectroscopy. This tool gives real-time information on the rise and fall of the amount of reduced cytochrome c within the mitochondrial sample, providing a method for rapid assessment of mitochondrial metabolism that has broad applications in both basic science and medical research.


Asunto(s)
Citocromos c , Mitocondrias , Animales , Citocromos c/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Espectrometría Raman , Porcinos
13.
Pathogens ; 9(11)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228102

RESUMEN

Cytomegalovirus (CMV) establishes persistent, latent infection in hosts, causing diseases in immunocompromised patients, transplant recipients, and neonates. CMV infection modifies the host chemokine axis by modulating chemokine and chemokine receptor expression and by encoding putative chemokine and chemokine receptor homologues. The viral proteins have roles in cellular signaling, migration, and transformation, as well as viral dissemination, tropism, latency and reactivation. Herein, we review the contribution of CMV-encoded chemokines and chemokine receptors to these processes, and further elucidate the viral tropism role of rat CMV (RCMV) R129 and R131. These homologues of the human CMV (HCMV)-encoded chemokines UL128 and UL130 are of particular interest because of their dual role as chemokines and members of the pentameric entry complex, which is required for entry into cell types that are essential for viral transmission and dissemination. The contributions of UL128 and UL130 to acceleration of solid organ transplant chronic rejection are poorly understood, and are in need of an effective in vivo model system to elucidate the phenomenon. We demonstrated similar molecular entry requirements for R129 and R131 in the rat cells, as observed for HCMV, and provided evidence that R129 and R131 are part of the viral entry complex required for entry into macrophages, dendritic cells, and bone marrow cells.

14.
J Biomed Opt ; 25(8): 1-20, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32790251

RESUMEN

SIGNIFICANCE: Photobiomodulation (PBM) refers to the beneficial effects of low-energy light absorption. Although there is a large body of literature describing downstream physiological benefits of PBM, there is a limited understanding of the molecular mechanisms underlying these effects. At present, the most popular hypothesis is that light absorption induces release of nitric oxide (NO) from the active site of cytochrome c oxidase (COX), allowing it to bind O2 instead. This is believed to increase mitochondrial respiration, and result in greater overall health of the cell due to increased adenosine triphosphate production. AIM: Although NO itself is a powerful signaling molecule involved in a host of biological responses, less attention has been devoted to NO mechanisms in the context of PBM. The purpose of our work is to investigate wavelength-specific effects on intracellular NO release in living cells. APPROACH: We have conducted in-depth dosimetry analyses of NO production and function in an in vitro retinal model in response to low-energy exposure to one or more wavelengths of laser light. RESULTS: We found statistically significant wavelength-dependent elevations (10% to 30%) in intracellular NO levels following laser exposures at 447, 532, 635, or 808 nm. Sequential or simultaneous exposures to light at two different wavelengths enhanced the NO modulation up to 50% of unexposed controls. Additionally, the immediate increases in cellular NO levels were independent of the function of NO synthase, depended greatly on the substrate source of electrons entering the electron transport chain, and did not result in increased levels of cyclic guanosine monophosphate. CONCLUSIONS: Our study concludes the simple model of light-mediated release of NO from COX is unlikely to explain the wide variety of PBM effects reported in the literature. Our multiwavelength method provides a novel tool for studying immediate and early mechanisms of PBM as well as exploring intracellular NO signaling networks.


Asunto(s)
Terapia por Luz de Baja Intensidad , Óxido Nítrico , Complejo IV de Transporte de Electrones , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción
15.
Front Immunol ; 10: 2563, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736977

RESUMEN

Chikungunya virus (CHIKV) infections can cause severe and debilitating joint and muscular pain that can be long lasting. Current CHIKV vaccines under development rely on the generation of neutralizing antibodies for protection; however, the role of T cells in controlling CHIKV infection and disease is still unclear. Using an overlapping peptide library, we identified the CHIKV-specific T cell receptor epitopes recognized in C57BL/6 infected mice at 7 and 14 days post-infection. A fusion protein containing peptides 451, 416, a small region of nsP4, peptide 47, and an HA tag (CHKVf5) was expressed using adenovirus and cytomegalovirus-vectored vaccines. Mice vaccinated with CHKVf5 elicited robust T cell responses to higher levels than normally observed following CHIKV infection, but the vaccine vectors did not elicit neutralizing antibodies. CHKVf5-vaccinated mice had significantly reduced infectious viral load when challenged by intramuscular CHIKV injection. Depletion of both CD4+ and CD8+ T cells in vaccinated mice rendered them fully susceptible to intramuscular CHIKV challenge. Depletion of CD8+ T cells alone reduced vaccine efficacy, albeit to a lesser extent, but depletion of only CD4+ T cells did not reverse the protective phenotype. These data demonstrated a protective role for CD8+ T cells in CHIKV infection. However, CHKVf5-vaccinated mice that were challenged by footpad inoculation demonstrated equal viral loads and increased footpad swelling at 3 dpi, which we attributed to the presence of CD4 T cell receptor epitopes present in the vaccine. Indeed, vaccination of mice with vectors expressing only CHIKV-specific CD8+ T cell epitopes followed by CHIKV challenge in the footpad prevented footpad swelling and reduced proinflammatory cytokine and chemokines associated with disease, indicating that CHIKV-specific CD8+ T cells prevent CHIKV disease. These results also indicate that a T cell-biased prophylactic vaccination approach is effective against CHIKV challenge and reduces CHIKV-induced disease in mice.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Fiebre Chikungunya/prevención & control , Virus Chikungunya/inmunología , Vacunación , Vacunas Virales/inmunología , Animales , Fiebre Chikungunya/genética , Fiebre Chikungunya/inmunología , Virus Chikungunya/genética , Chlorocebus aethiops , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Células Vero , Vacunas Virales/genética
16.
J Biomed Opt ; 24(6): 1-15, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31230427

RESUMEN

Computational models predicting cell damage responses to transient temperature rises generated by exposure to lasers have implemented the damage integral (Ω), which time integrates the chemical reaction rate constant described by Arrhenius. However, few published reports of empirical temperature histories (thermal profiles) correlated with damage outcomes at the cellular level are available to validate the breadth of applicability of the damage integral. In our study, an analysis of photothermal damage rate processes in cultured retinal pigment epithelium cells indicated good agreement between temperature rise, exposure duration (τ), and threshold cellular damage. Full-frame thermograms recorded at high magnification during laser exposures were overlaid with fluorescence damage images taken 1 h postexposure. From the image overlays, pixels of the thermogram correlated with the boundary of cell death were used to extract threshold thermal profiles. Assessing photothermal responses at these boundaries standardized all data points, irrespective of laser irradiance, damage size, or optical and thermal properties of the cells. These results support the hypothesis that data from boundaries of cell death were equivalent to a minimum visible lesion, where the damage integral approached unity (Ω = 1) at the end of the exposure duration. Empirically resolved Arrhenius coefficients for use in the damage integral determined from exposures at wavelengths of 2 µm and 532 nm and durations of 0.05-20 s were consistent with literature values. Varying ambient temperature (Tamb) between 20°C and 40°C during laser exposure did not change the τ-dependent threshold peak temperature (Tp). We also show that, although threshold laser irradiance varied due to pigmentation differences, threshold temperatures were irradiance independent.


Asunto(s)
Células Epiteliales , Calor/efectos adversos , Rayos Láser/efectos adversos , Epitelio Pigmentado de la Retina/citología , Células Cultivadas , Simulación por Computador , Células Epiteliales/fisiología , Células Epiteliales/efectos de la radiación , Humanos , Modelos Biológicos
17.
Int J Hyperthermia ; 36(1): 466-472, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30922131

RESUMEN

Objective/Purpose: In order to study the effects of hyperthermia and other temperature-related effects on cells and tissues, determining the precise time/temperature course is crucial. Here we present a non-contact optoacoustic technique, which provides temperatures during heating of cultured cells with scalable temporal and spatial resolution. METHODS: A thulium laser (1.94 µm) with a maximum power of 15 W quickly and efficiently heats cells in a culture dish because of low penetration depth (1/e penetration depths of 78 µm) of the radiation in water. A repetitively Q-switched holmium laser (2.1 µm) is used simultaneously to probe temperatures at different locations in the dish by using the photoacoustic effect. Due to thermoelastic expansion of water, pressure waves are emitted and measured with an ultrasonic hydrophone at the side of the dish. The amplitudes of the waves are temperature dependent and can be used to calculate the temperature/time course at any location of probing. RESULTS: We measured temperatures of up to 55 °C with a heating power of 6 W after 10 s, and subsequent lateral temperature profiles over time. Within this profile, temperature fluctuations were found, likely owing to thermal convection and water circulation. By using cultured retinal pigment epithelial cells, it is shown that the probe laser pulses alone cause no biological damage, while immediate cell damage occurs when heating for 10 s at temperatures exceeding 45 °C. CONCLUSIONS: This method shows great potential not only as a noninvasive, non-contact method to determine temperature/time responses of cells in culture, but also for complex tissue and other materials.


Asunto(s)
Calor/uso terapéutico , Hipertermia Inducida/métodos , Células Cultivadas , Estudios de Factibilidad , Humanos
18.
Top Stroke Rehabil ; : 1-7, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30319078

RESUMEN

BACKGROUND: Early mobilization (EM) post-stroke is recommended; however, the ideal timing and nature of EM, and factors that may influence EM practice are unclear. OBJECTIVES: The primary objective was to describe the type and extent of mobilization 0-48 h post-stroke admission to acute hospital care. A secondary objective was to evaluate whether pre-stroke functional level, stroke severity, tissue plasminogen activator (tPA) administration, and level of consciousness (LOC) predicted any passive, any active, and out-of-bed mobilization (i.e. sitting at edge-of-bed, standing, or ambulation) 0-24 h post-admission. METHODS: A quantitative, cross-sectional, retrospective review of health records of patients admitted to a specialized acute stroke center in 2016 was conducted. RESULTS: Data from 296 eligible health records were abstracted. Median age was 73 years, and 87% of patients had sustained an ischemic stroke. Active, passive, and out-of-bed mobilization occurred in 91.6%, 57.1%, and 24.3% of patients by 12 h post-admission, respectively, and 99.3%, 78.4%, and 77.4% of patients by 48 h post-admission, respectively. Administration of tPA, stroke severity, and impaired LOC, were each associated with any passive mobilization, and no tPA administration, stroke severity, and normal LOC were each associated with out-of-bed mobilization 0-24 h post-admission (p < 0.05). CONCLUSIONS: Almost all patients receive active mobilization by 12 h post-admission whereas out-of-bed mobilization is infrequent. In the first 24 h post-admission, clinicians may prioritize passive over out-of-bed mobilization when patients have received tPA, present with severe stroke, and have impaired LOC. This conservative approach is unsurprising given the lack of clear practice recommendations for these situations.

19.
Nat Commun ; 9(1): 263, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343712

RESUMEN

Zika virus (ZIKV) infection during pregnancy leads to an increased risk of fetal growth restriction and fetal central nervous system malformations, which are outcomes broadly referred to as the Congenital Zika Syndrome (CZS). Here we infect pregnant rhesus macaques and investigate the impact of persistent ZIKV infection on uteroplacental pathology, blood flow, and fetal growth and development. Despite seemingly normal fetal growth and persistent fetal-placenta-maternal infection, advanced non-invasive in vivo imaging studies reveal dramatic effects on placental oxygen reserve accompanied by significantly decreased oxygen permeability of the placental villi. The observation of abnormal oxygen transport within the placenta appears to be a consequence of uterine vasculitis and placental villous damage in ZIKV cases. In addition, we demonstrate a robust maternal-placental-fetal inflammatory response following ZIKV infection. This animal model reveals a potential relationship between ZIKV infection and uteroplacental pathology that appears to affect oxygen delivery to the fetus during development.


Asunto(s)
Placenta/metabolismo , Circulación Placentaria , Complicaciones Infecciosas del Embarazo/inmunología , Infección por el Virus Zika/inmunología , Inmunidad Adaptativa , Animales , Encéfalo/embriología , Encéfalo/patología , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal , Feto/patología , Inmunidad Innata , Macaca mulatta , Imagen por Resonancia Magnética , Oxígeno/metabolismo , Permeabilidad , Placenta/inmunología , Placenta/patología , Placenta/virología , Embarazo , Complicaciones Infecciosas del Embarazo/metabolismo , Complicaciones Infecciosas del Embarazo/patología , Complicaciones Infecciosas del Embarazo/fisiopatología , Carga Viral , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patología , Infección por el Virus Zika/fisiopatología
20.
J Geophys Res Space Phys ; 122(9): 9207-9227, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29214118

RESUMEN

The two full precessions in local time completed by the Van Allen Probes enable global specification of the near-equatorial inner magnetosphere plasma environment. Observations by the Helium-Oxygen-Proton-Electron (HOPE) mass spectrometers provide detailed insight into the global spatial distribution of electrons, H+, He+, and O+. Near-equatorial omnidirectional fluxes and abundance ratios at energies 0.1-30 keV are presented for 2 ≤ L ≤ 6 as a function of L shell, magnetic local time (MLT), and geomagnetic activity. We present a new tool built on the UBK modeling technique for classifying plasma sheet particle access to the inner magnetosphere. This new tool generates access maps for particles of constant energy for more direct comparison with in situ measurements, rather than the traditional constant µ presentation typically associated with UBK. We present for the first time inner magnetosphere abundances of O+ flux relative to H+ flux as a function of Kp, L, MLT, and energy. At L = 6, the O+/H+ ratio increases with increasing Kp, consistent with previous results. However, at L < 5 the O+/H+ ratio generally decreases with increasing Kp. We identify a new "afternoon bulge" plasma population enriched in 10 keV O+ and superenriched in 10 keV He+ that is present during quiet/moderate geomagnetic activity (Kp < 5) at ~1100-2000 MLT and L shell 2-4. Drift path modeling results are consistent with the narrow energy and approximate MLT location of this enhancement, but the underlying physics describing its formation, structure, and depletion during higher geomagnetic activity are currently not understood.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA