Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 11197, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433881

RESUMEN

Novel malaria vector control strategies targeting the odour-orientation of mosquitoes during host-seeking, such as 'attract-and-kill' or 'push-and-pull', have been suggested as complementary tools to indoor residual spraying and long-lasting insecticidal nets. These would be particularly beneficial if they can target vectors in the peri-domestic space where people are unprotected by traditional interventions. A randomized double-blind placebo-control study was implemented in western Kenya to evaluate: a 'push' intervention (spatial repellent) using transfluthrin-treated fabric strips positioned at open eave gaps of houses; a 'pull' intervention placing an odour-baited mosquito trap at a 5 m distance from a house; the combined 'push-pull' package; and the control where houses contained all elements but without active ingredients. Treatments were rotated through 12 houses in a randomized-block design. Outdoor biting was estimated using human landing catches, and indoor mosquito densities using light-traps. None of the interventions provided any protection from outdoor biting malaria vectors. The 'push' reduced indoor vector densities dominated by Anopheles funestus by around two thirds. The 'pull' device did not add any benefit. In the light of the high Anopheles arabiensis biting densities outdoors in the study location, the search for efficient outdoor protection and effective pull components needs to continue.


Asunto(s)
Anopheles , Malaria , Animales , Humanos , Malaria/prevención & control , Mosquitos Vectores , Odorantes/prevención & control , Ligando de CD40
2.
Malar J ; 20(1): 476, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930254

RESUMEN

BACKGROUND: Efforts to improve the impact of long-lasting insecticidal nets (LLINs) should be informed by understanding of the causes of decay in effect. Holes in LLINs have been estimated to account for 7-11% of loss in effect on vectorial capacity for Plasmodium falciparum malaria in an analysis of repeated cross-sectional surveys of LLINs in Kenya. This does not account for the effect of holes as a cause of net attrition or non-use, which cannot be measured using only cross-sectional data. There is a need for estimates of how much these indirect effects of physical damage on use and attrition contribute to decay in effectiveness of LLINs. METHODS: Use, physical integrity, and survival were assessed in a cohort of 4514 LLINs followed for up to 4 years in Kenya. Flow diagrams were used to illustrate how the status of nets, in terms of categories of use, physical integrity, and attrition, changed between surveys carried out at 6-month intervals. A compartment model defined in terms of ordinary differential equations (ODEs) was used to estimate the transition rates between the categories. Effects of physical damage to LLINs on use and attrition were quantified by simulating counterfactuals in which there was no damage. RESULTS: Allowing for the direct effect of holes, the effect on use, and the effect on attrition, 18% of the impact on vectorial capacity was estimated to be lost because of damage. The estimated median lifetime of the LLINs was 2.9 years, but this was extended to 5.7 years in the counterfactual without physical damage. Nets that were in use were more likely to be in a damaged state than unused nets but use made little direct difference to LLIN lifetimes. Damage was reported as the reason for attrition for almost half of attrited nets, but the model estimated that almost all attrited nets had suffered some damage before attrition. CONCLUSIONS: Full quantification of the effects of damage will require measurement of the supply of new nets and of household stocks of unused nets, and also of their impacts on both net use and retention. The timing of mass distribution campaigns is less important than ensuring sufficient supply. In the Kenyan setting, nets acquired damage rapidly once use began and the damage led to rapid attrition. Increasing the robustness of nets could substantially increase their lifetime and impact but the impact of LLIN programmes on malaria transmission is ultimately limited by levels of use. Longitudinal analyses of net integrity data from different settings are needed to determine the importance of physical damage to nets as a driver of attrition and non-use, and the importance of frequent use as a cause of physical damage in different contexts.


Asunto(s)
Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Control de Mosquitos/estadística & datos numéricos , Kenia , Malaria/prevención & control
3.
Parasit Vectors ; 14(1): 64, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33472661

RESUMEN

BACKGROUND: Semi-field experiments with human landing catch (HLC) measure as the outcome are an important step in the development of novel vector control interventions against outdoor transmission of malaria since they provide good estimates of personal protection. However, it is often infeasible to determine whether the reduction in HLC counts is due to mosquito mortality or repellency, especially considering that spatial repellents based on volatile pyrethroids might induce both. Due to the vastly different impact of repellency and mortality on transmission, the community-level impact of spatial repellents can not be estimated from such semi-field experiments. METHODS: We present a new stochastic model that is able to estimate for any product inhibiting outdoor biting, its repelling effect versus its killing and disarming (preventing host-seeking until the next night) effects, based only on time-stratified HLC data from controlled semi-field experiments. For parameter inference, a Bayesian hierarchical model is used to account for nightly variation of semi-field experimental conditions. We estimate the impact of the products on the vectorial capacity of the given Anopheles species using an existing mathematical model. With this methodology, we analysed data from recent semi-field studies in Kenya and Tanzania on the impact of transfluthrin-treated eave ribbons, the odour-baited Suna trap and their combination (push-pull system) on HLC of Anopheles arabiensis in the peridomestic area. RESULTS: Complementing previous analyses of personal protection, we found that the transfluthrin-treated eave ribbons act mainly by killing or disarming mosquitoes. Depending on the actual ratio of disarming versus killing, the vectorial capacity of An. arabiensis is reduced by 41 to 96% at 70% coverage with the transfluthrin-treated eave ribbons and by 38 to 82% at the same coverage with the push-pull system, under the assumption of a similar impact on biting indoors compared to outdoors. CONCLUSIONS: The results of this analysis of semi-field data suggest that transfluthrin-treated eave ribbons are a promising tool against malaria transmission by An. arabiensis in the peridomestic area, since they provide both personal and community protection. Our modelling framework can estimate the community-level impact of any tool intervening during the mosquito host-seeking state using data from only semi-field experiments with time-stratified HLC.


Asunto(s)
Malaria/prevención & control , Control de Mosquitos/normas , Mosquitos Vectores/parasitología , Animales , Anopheles/efectos de los fármacos , Teorema de Bayes , Ciclopropanos/farmacología , Femenino , Fluorobencenos/farmacología , Humanos , Mordeduras y Picaduras de Insectos/prevención & control , Repelentes de Insectos , Malaria/transmisión , Modelos Teóricos , Control de Mosquitos/métodos , Odorantes
4.
Malar J ; 18(1): 441, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31870365

RESUMEN

BACKGROUND: A clear understanding of mosquito biology is fundamental to the control efforts of mosquito-borne diseases such as malaria. Mosquito mark-release-recapture (MMRR) experiments are a popular method of measuring the survival and dispersal of disease vectors; however, examples with African malaria vectors are limited. Ethical and technical difficulties involved in carrying out MMRR studies may have held back research in this area and, therefore, a device that marks mosquitoes as they emerge from breeding sites was developed and evaluated to overcome the problems of MMRR. METHODS: A modified self-marking unit that marks mosquitoes with fluorescent pigment as they emerge from their breeding site was developed based on a previous design for Culex mosquitoes. The self-marking unit was first evaluated under semi-field conditions with laboratory-reared Anopheles arabiensis to determine the marking success and impact on mosquito survival. Subsequently, a field evaluation of MMRR was conducted in Yombo village, Tanzania, to examine the feasibility of the system. RESULTS: During the semi-field evaluation the self-marking units successfully marked 86% of emerging mosquitoes and there was no effect of fluorescent marker on mosquito survival. The unit successfully marked wild male and female Anopheles gambiae sensu lato (s.l.) in sufficiently large numbers to justify its use in MMRR studies. The estimated daily survival probability of An. gambiae s.l. was 0.87 (95% CI 0.69-1.10) and mean dispersal distance was 579 m (95% CI 521-636 m). CONCLUSIONS: This study demonstrates the successful use of a self-marking device in an MMRR study with African malaria vectors. This method may be useful in investigating population structure and dispersal of mosquitoes for deployment and evaluation of future vector control tools, such as gene drive, and to better parameterize mathematical models.


Asunto(s)
Distribución Animal , Anopheles/fisiología , Entomología/métodos , Control de Mosquitos/métodos , Mosquitos Vectores/fisiología , Animales , Femenino , Longevidad , Malaria , Masculino , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...