Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(3): eabh2635, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35061544

RESUMEN

Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC.

2.
STAR Protoc ; 1(2): 100048, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-33111094

RESUMEN

The metabolic activity of cells is interrelated with cell signaling, functions, and fate. Uncontrolled cancer cell proliferation requires metabolic adaptations. Research focusing on understanding the characteristics of cell metabolism is crucial for the development of novel diagnostic and therapeutic strategies. Here, we describe protocols for the ATP profiling of single cancer cells by fluorescence live-cell imaging. In response to distinct metabolic inhibitions, we record individual mitochondrial ATP dynamics using established Förster resonance energy transfer-based genetically encoded fluorescent ATP probes. For complete details on the use and execution of this protocol, please refer to Depaoli et al. (2018).


Asunto(s)
Adenosina Trifosfato , Colorantes Fluorescentes , Mitocondrias , Análisis de la Célula Individual/métodos , Células Tumorales Cultivadas , Adenosina Trifosfato/análisis , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Mitocondrias/química , Mitocondrias/metabolismo , Imagen Molecular , Ratas , Células Tumorales Cultivadas/citología , Células Tumorales Cultivadas/metabolismo
3.
Front Cell Neurosci ; 13: 449, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636543

RESUMEN

Mitochondrial Ca2+ uptake into the mitochondrial matrix is a well-established mechanism. However, the sub-organellar Ca2+ kinetics remain elusive. In the present work we identified novel site-specific targeting sequences for the intermembrane space (IMS) and the cristae lumen (CL). We used these novel targeting peptides to develop green- and red- Ca2+ biosensors targeted to the IMS and to the CL. Based on their distinctive spectral properties, and comparable sensitivities these novel constructs were suitable to visualize Ca2+-levels in various (sub) compartments in a multi-chromatic manner. Functional studies that applied these new biosensors revealed that knockdown of MCU and EMRE yielded elevated Ca2+ levels inside the CL but not the IMS in response to IP3-generating agonists. Knockdown of VDAC1, however, strongly impeded the transfer of Ca2+ through the OMM while the cytosolic Ca2+ signal remained unchanged. The novel sub-mitochondrially targeted Ca2+ biosensors proved to be suitable for Ca2+ imaging with high spatial and temporal resolution in a multi-chromatic manner allowing simultaneous measurements. These informative biosensors will facilitate efforts to dissect the complex sub-mitochondrial Ca2+ signaling under (patho)physiological conditions.

4.
Cell Physiol Biochem ; 53(3): 573-586, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31529929

RESUMEN

BACKGROUND/AIMS: In our recent work, the importance of GSK3ß-mediated phosphorylation of presenilin-1 as crucial process to establish a Ca2+ leak in the endoplasmic reticulum and, subsequently, the pre-activation of resting mitochondrial activity in ß-cells was demonstrated. The present work is a follow-up and reveals the importance of GSK3ß-phosphorylated presenilin-1 for responsiveness of pancreatic islets and ß-cells to elevated glucose in terms of cytosolic Ca2+ spiking and insulin secretion. METHODS: Freshly isolated pancreatic islets and the two pancreatic ß-cell lines INS-1 and MIN-6 were used. Cytosolic Ca2+ was fluorometrically monitored using Fura-2/AM and cellular insulin content and secretion were measured by ELISA. RESULTS: Our data strengthened our previous findings of the existence of a presenilin-1-mediated ER-Ca2+ leak in ß-cells, since a reduction of presenilin-1 expression strongly counteracted the ER Ca2+ leak. Furthermore, our data revealed that cytosolic Ca2+ spiking upon administration of high D-glucose was delayed in onset time and strongly reduced in amplitude and frequency upon siRNA-mediated knock-down of presenilin-1 or the inhibition of GSK3ß in the pancreatic ß-cells. Moreover, glucose-triggered initial insulin secretion disappeared by depletion from presenilin-1 and inhibition of GSK3ß in the pancreatic ß-cells and isolated pancreatic islets, respectively. CONCLUSION: These data complement our previous work and demonstrate that the sensitivity of pancreatic islets and ß-cells to glucose illustrated as glucose-triggered cytosolic Ca2+ spiking and initial but not long-lasting insulin secretion crucially depends on a strong ER Ca2+ leak that is due to the phosphorylation of presenilin-1 by GSK3ß, a phenomenon that might be involved in the development of type 2 diabetes.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Presenilina-1/metabolismo , Animales , Antracenos/farmacología , Calcio/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Humanos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , MAP Quinasa Quinasa 4/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
5.
Pharmacol Ther ; 202: 98-119, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31176696

RESUMEN

The interplay of metabolic and signaling processes is prerequisite for the functionality of cells. Any disturbances may have severe consequences, resulting in the development of diseases. However, the complex coordination of metabolism and signaling events makes it difficult to decipher the link between molecular irregularities and pathogenesis. An excellent way to provide more clarity is to see into the living cell and watch cellular processes in real-time, with the add-on of being able to manipulate certain processes. Live cell imaging enables us to do exactly that, with steadily improving spatial and temporal resolution. Modern genetically encoded fluorescent probes in combination with state-of-the-art high-resolution imaging devices have proven themselves as a valuable approach for monitoring, manipulating and ultimately understanding the interaction of cell metabolism and signaling. These probes also represent powerful tools for detecting biomarkers of disease, identifying new drug targets and elucidating drug actions at the cellular to the molecular level.


Asunto(s)
Transducción de Señal/fisiología , Animales , Biomarcadores/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos
6.
Cell Physiol Biochem ; 52(1): 57-75, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30790505

RESUMEN

BACKGROUND/AIMS: In pancreatic ß-cells, the intracellular Ca²âº homeostasis is an essential regulator of the cells major functions. The endoplasmic reticulum (ER) as interactive intracellular Ca²âº store balances cellular Ca²âº. In this study basal ER Ca²âº homeostasis was evaluated in order to reveal potential ß-cell-specificity of ER Ca²âº handling and its consequences for mitochondrial Ca²âº, ATP and respiration. METHODS: The two pancreatic cell lines INS-1 and MIN-6, freshly isolated pancreatic islets, and the two non-pancreatic cell lines HeLA and EA.hy926 were used. Cytosolic, ER and mitochondrial Ca²âº and ATP measurements were performed using single cell fluorescence microscopy and respective (genetically-encoded) sensors/dyes. Mitochondrial respiration was monitored by respirometry. GSK3ß activity was measured with ELISA. RESULTS: An atypical ER Ca²âº leak was observed exclusively in pancreatic islets and ß-cells. This continuous ER Ca²âº efflux is directed to mitochondria and increases basal respiration and organellar ATP levels, is established by GSK3ß-mediated phosphorylation of presenilin-1, and is prevented by either knockdown of presenilin-1 or an inhibition/knockdown of GSK3ß. Expression of a presenlin-1 mutant that mimics GSK3ß-mediated phosphorylation established a ß-cell-like ER Ca²âº leak in HeLa and EA.hy926 cells. The ER Ca²âº loss in ß-cells was compensated at steady state by Ca²âº entry that is linked to the activity of TRPC3. CONCLUSION: Pancreatic ß-cells establish a cell-specific ER Ca²âº leak that is under the control of GSK3ß and directed to mitochondria, thus, reflecting a cell-specific intracellular Ca²âº handling for basal mitochondrial activity.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Presenilina-1/metabolismo , Animales , Línea Celular Tumoral , Retículo Endoplásmico/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Células HeLa , Humanos , Masculino , Ratones , Mitocondrias/genética , Fosforilación , Presenilina-1/genética , Ratas
7.
Biol Rev Camb Philos Soc ; 94(2): 610-628, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30338910

RESUMEN

The endoplasmic reticulum (ER) is a functionally and morphologically complex cellular organelle largely responsible for a variety of crucial functions, including protein folding, maturation and degradation. Furthermore, the ER plays an essential role in lipid biosynthesis, dynamic Ca2+ storage, and detoxification. Malfunctions in ER-related processes are responsible for the genesis and progression of many diseases, such as heart failure, cancer, neurodegeneration and metabolic disorders. To fulfill many of its vital functions, the ER relies on a sufficient energy supply in the form of adenosine-5'-triphosphate (ATP), the main cellular energy source. Despite landmark discoveries and clarification of the functional principles of ER-resident proteins and key ER-related processes, the mechanism underlying ER ATP transport remains somewhat enigmatic. Here we summarize ER-related ATP-consuming processes and outline our knowledge about the nature and function of the ER energy supply.


Asunto(s)
Adenosina Trifosfato/metabolismo , Retículo Endoplásmico/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Aparato de Golgi/metabolismo , Humanos
8.
Cell Rep ; 25(2): 501-512.e3, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30304688

RESUMEN

Reprogramming of metabolic pathways determines cell functions and fate. In our work, we have used organelle-targeted ATP biosensors to evaluate cellular metabolic settings with high resolution in real time. Our data indicate that mitochondria dynamically supply ATP for glucose phosphorylation in a variety of cancer cell types. This hexokinase-dependent process seems to be reversed upon the removal of glucose or other hexose sugars. Our data further verify that mitochondria in cancer cells have increased ATP consumption. Similar subcellular ATP fluxes occurred in young mouse embryonic fibroblasts (MEFs). However, pancreatic beta cells, senescent MEFs, and MEFs lacking mitofusin 2 displayed completely different mitochondrial ATP dynamics, indicative of increased oxidative phosphorylation. Our findings add perspective to the variability of the cellular bioenergetics and demonstrate that live cell imaging of mitochondrial ATP dynamics is a powerful tool to evaluate metabolic flexibility and heterogeneity at a single-cell level.


Asunto(s)
Adenosina Trifosfato/metabolismo , Glucosa/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Análisis de la Célula Individual/métodos , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Metabolismo Energético , Fibroblastos/citología , Fibroblastos/metabolismo , Glucólisis , Células HeLa , Humanos , Ratones , Microscopía/métodos , Fosforilación Oxidativa , Consumo de Oxígeno
9.
Free Radic Biol Med ; 128: 50-58, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-29398285

RESUMEN

Over the last decades a broad collection of sophisticated fluorescent protein-based probes was engineered with the aim to specifically monitor nitric oxide (NO), one of the most important signaling molecules in biology. Here we report and discuss the characteristics and fields of applications of currently available genetically encoded fluorescent sensors for the detection of NO and its metabolites in different cell types. LONG ABSTRACT: Because of its radical nature and short half-life, real-time imaging of NO on the level of single cells is challenging. Herein we review state-of-the-art genetically encoded fluorescent sensors for NO and its byproducts such as peroxynitrite, nitrite and nitrate. Such probes enable the real-time visualization of NO signals directly or indirectly on the level of single cells and cellular organelles and, hence, extend our understanding of the spatiotemporal dynamics of NO formation, diffusion and degradation. Here, we discuss the significance of NO detection in individual cells and on subcellular level with genetic biosensors. Currently available genetically encoded fluorescent probes for NO and nitrogen species are critically discussed in order to provide insights in the functionality and applicability of these promising tools. As an outlook we provide ideas for novel approaches for the design and application of improved NO probes and fluorescence imaging protocols.


Asunto(s)
Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Proteínas Luminiscentes/metabolismo , Óxido Nítrico/análisis , Humanos , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Óxido Nítrico/metabolismo , Transducción de Señal
10.
J Vis Exp ; (121)2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28362417

RESUMEN

Nitric Oxide (NO•) is a small radical, which mediates multiple important cellular functions in mammals, bacteria and plants. Despite the existence of a large number of methods for detecting NO• in vivo and in vitro, the real-time monitoring of NO• at the single-cell level is very challenging. The physiological or pathological effects of NO• are determined by the actual concentration and dwell time of this radical. Accordingly, methods that allow the single-cell detection of NO• are highly desirable. Recently, we expanded the pallet of NO• indicators by introducing single fluorescent protein-based genetically encoded nitric oxide (NO•) probes (geNOps) that directly respond to cellular NO• fluctuations and, hence, addresses this need. Here we demonstrate the usage of geNOps to assess intracellular NO• signals in response to two different chemical NO•-liberating molecules. Our results also confirm that freshly prepared 3-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-propanamine (NOC-7) has a much higher potential to evoke change in intracellular NO• levels as compared with the inorganic NO• donor sodium nitroprusside (SNP). Furthermore, dual-color live-cell imaging using the green geNOps (G-geNOp) and the chemical Ca2+ indicator fura-2 was performed to visualize the tight regulation of Ca2+-dependent NO• formation in single endothelial cells. These representative experiments demonstrate that geNOps are suitable tools to investigate the real-time generation and degradation of single-cell NO• signals in diverse experimental setups.


Asunto(s)
Células Endoteliales/metabolismo , Colorantes Fluorescentes/metabolismo , Óxido Nítrico/metabolismo , Animales , Células Cultivadas , Dependovirus , Fura-2/química , Vectores Genéticos , Células HEK293 , Humanos , Hidrazinas/farmacología , Microscopía Fluorescente/métodos , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Parvovirinae/genética
11.
Free Radic Biol Med ; 102: 248-259, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27923677

RESUMEN

Mitochondrial Ca2+ uptake regulates diverse endothelial cell functions and has also been related to nitric oxide (NO•) production. However, it is not entirely clear if the organelles support or counteract NO• biosynthesis by taking up Ca2+. The objective of this study was to verify whether or not mitochondrial Ca2+ uptake influences Ca2+-triggered NO• generation by endothelial NO• synthase (eNOS) in an immortalized endothelial cell line (EA.hy926), respective primary human umbilical vein endothelial cells (HUVECs) and eNOS-RFP (red fluorescent protein) expressing human embryonic kidney (HEK293) cells. We used novel genetically encoded fluorescent NO• probes, the geNOps, and Ca2+ sensors to monitor single cell NO• and Ca2+ dynamics upon cell treatment with ATP, an inositol 1,4,5-trisphosphate (IP3)-generating agonist. Mitochondrial Ca2+ uptake was specifically manipulated by siRNA-mediated knock-down of recently identified key components of the mitochondrial Ca2+ uniporter machinery. In endothelial cells and the eNOS-RFP expressing HEK293 cells we show that reduced mitochondrial Ca2+ uptake upon the knock-down of the mitochondrial calcium uniporter (MCU) protein and the essential MCU regulator (EMRE) yield considerable attenuation of the Ca2+-triggered NO• increase independently of global cytosolic Ca2+ signals. The knock-down of mitochondrial calcium uptake 1 (MICU1), a gatekeeper of the MCU, increased both mitochondrial Ca2+ sequestration and Ca2+-induced NO• signals. The positive correlation between mitochondrial Ca2+ elevation and NO• production was independent of eNOS phosphorylation at serine1177. Our findings emphasize that manipulating mitochondrial Ca2+ uptake may represent a novel strategy to control eNOS-mediated NO• production.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Canales de Calcio/genética , Células Endoteliales/enzimología , Células HEK293 , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Potencial de la Membrana Mitocondrial , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...