Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38883769

RESUMEN

DNA damage and cytoplasmic DNA induce type-1 interferon (IFN-1) and potentiate responses to immune checkpoint inhibitors. Our prior work found that inhibitors of the DNA damage response kinase ATR (ATRi) induce IFN-1 and deoxyuridine (dU) incorporation by DNA polymerases, akin to antimetabolites. Whether and how dU incorporation is required for ATRi-induced IFN-1 signaling is not known. Here, we show that ATRi-dependent IFN-1 responses require uracil DNA glycosylase (UNG)-initiated base excision repair and STING. Quantitative analyses of nine distinct nucleosides reveals that ATRi induce dU incorporation more rapidly in UNG wild-type than knockout cells, and that induction of IFN-1 is associated with futile cycles of repair. While ATRi induce similar numbers of micronuclei in UNG wild-type and knockout cells, dU containing micronuclei and cytoplasmic DNA are increased in knockout cells. Surprisingly, DNA fragments containing dU block STING-dependent induction of IFN-1, MHC-1, and PD-L1. Furthermore, UNG knockout sensitizes cells to IFN-γ in vitro , and potentiates responses to anti-PD-L1 in resistant tumors in vivo . These data demonstrate an unexpected and specific role for dU-rich DNA in suppressing STING-dependent IFN-1 responses, and show that UNG-deficient tumors have a heightened response to immune checkpoint inhibitors. STATEMENT OF SIGNIFICANCE: Antimetabolites disrupt nucleotide pools and increase dU incorporation by DNA polymerases. We show that unrepaired dU potentiates responses to checkpoint inhibitors in mouse models of cancer. Patients with low tumor UNG may respond to antimetabolites combined with checkpoint inhibitors, and patients with high tumor UNG may respond to UNG inhibitors combined with checkpoint inhibitors.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38743253

RESUMEN

BACKGROUND: The Ataxia Telangiectasia and Rad3-related (ATR) protein complex is an apical initiator of DNA damage response pathways. Several ATR inhibitors (ATRi) are in clinical development including berzosertib (formerly M6620, VX-970). Although clinical studies have examined plasma pharmacokinetics (PK) in humans, little is known regarding dose/exposure relationships and tissue distribution. To understand these concepts, we extensively characterized the PK of berzosertib in mouse plasma and tissues. METHODS: A highly sensitive LC-MS/MS method was utilized to quantitate berzosertib in plasma and tissues. Dose proportionality was assessed in female BALB/c mice following single IV doses (2, 6, 20 or 60 mg/kg). A more extensive PK study was conducted in tumor-bearing mice following a single IV dose of 20 mg/kg to evaluate distribution to tissues. PK parameters were calculated by non-compartmental analysis (NCA). A compartmental model was developed to describe the PK behavior of berzosertib. Plasma protein binding was determined in vitro. RESULTS: Increased doses of berzosertib were associated with less than proportional increases in early plasma concentrations and greater than proportional increase in tissue exposure, attributable to saturation of plasma protein binding. Berzosertib extensively distributed into bone marrow, tumor, thymus, and lymph nodes, however; brain and spinal cord exposure was less than plasma. CONCLUSION: The nonlinear PK of berzosertib displayed here can be attributed to saturation of plasma protein binding and occurred at concentrations close to those observed in clinical trials. Our results will help to understand preclinical pharmacodynamic and toxicity data and to inform optimal dosing and deployment of berzosertib.

3.
Cell Rep ; 40(12): 111371, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130512

RESUMEN

ATR kinase is a central regulator of the DNA damage response (DDR) and cell cycle checkpoints. ATR kinase inhibitors (ATRi's) combine with radiation to generate CD8+ T cell-dependent responses in mouse models of cancer. We show that ATRi's induce cyclin-dependent kinase 1 (CDK1)-dependent origin firing across active replicons in CD8+ T cells activated ex vivo while simultaneously decreasing the activity of rate-limiting enzymes for nucleotide biosynthesis. These pleiotropic effects of ATRi induce deoxyuridine (dU) contamination in genomic DNA, R loops, RNA-DNA polymerase collisions, and interferon-α/ß (IFN-α/ß). Remarkably, thymidine rescues ATRi-induced dU contamination and partially rescues death and IFN-α/ß expression in proliferating CD8+ T cells. Thymidine also partially rescues ATRi-induced cancer cell death. We propose that ATRi-induced dU contamination contributes to dose-limiting leukocytopenia and inflammation in the clinic and CD8+ T cell-dependent anti-tumor responses in mouse models. We conclude that ATR is essential to limit dU contamination in genomic DNA and IFN-α/ß expression.


Asunto(s)
Linfocitos T CD8-positivos , Proteína Quinasa CDC2 , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteína Quinasa CDC2/metabolismo , Muerte Celular , Línea Celular Tumoral , ADN , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiuridina , Genómica , Interferón-alfa/metabolismo , Interferón beta , Ratones , Nucleótidos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , ARN , Timidina/farmacología
4.
Cancer Chemother Pharmacol ; 89(6): 795-807, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35507041

RESUMEN

PURPOSE: Ataxia Telangiectasia and Rad3-related (ATR) is a pivotal component of the DNA damage response and repair pathways that is activated in responses to cytotoxic cancer treatments. Several ATR inhibitors (ATRi) are in development that block the ATR mediated DNA repair and enhance the damage associated with cytotoxic therapy. BAY-1895344 (elimusertib) is an orally available ATRi with preclinical efficacy that is in clinical development. Little is known about the pharmacokinetics (PK) which is of interest, because tissue exposure and ATR inhibition may relate to toxicities or responses. METHODS: To evaluate BAY-1895344 PK, a sensitive LC-MS/MS method was utilized for quantitation in mouse plasma and tissues. PK studies in mice were first conducted to determine dose linearity. In vivo metabolites were identified and analyzed semi-quantitatively. A compartmental PK model was developed to describe PK behavior. An extensive PK study was then conducted in tumor-bearing mice to quantitate tissue distribution for relevant tissues. RESULTS: Dose linearity was observed from 1 to 10 mg/kg PO, while at 40 mg/kg PO bioavailability increased approximately fourfold due to saturation of first-pass metabolism, as suggested by metabolite analyses and a developed compartmental model. Longer half-lives in PO treated mice compared to IV treated mice indicated absorption-rate limited elimination. Tissue distribution varied but showed extensive distribution to bone marrow, brain, and spinal cord. CONCLUSIONS: Complex PK behavior was limited to absorption processes which may not be recapitulated clinically. Tissue partition coefficients may be used to contrast ATR inhibitors with respect to their efficacy and toxicity.


Asunto(s)
Inhibidores de Proteínas Quinasas , Espectrometría de Masas en Tándem , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Disponibilidad Biológica , Cromatografía Liquida , Humanos , Ratones , Inhibidores de Proteínas Quinasas/farmacocinética , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...