RESUMEN
[This corrects the article DOI: 10.1016/j.rpth.2024.102432.].
RESUMEN
Here, we present a series of illustrated capsules from the State of the Art (SOA) speakers at the 2024 International Society on Thrombosis and Haemostasis Congress in Bangkok, Thailand. This year's Congress marks the first time that the International Society on Thrombosis and Haemostasis has held its flagship scientific meeting in Southeast Asia and is the first to be organized by an international Planning Committee. The Bangkok program will feature innovative science and clinical updates from around the world, reflecting the diversity and multidisciplinary growth of our field. In these illustrated SOA capsules, you will find an exploration of novel models of thrombosis and bleeding and biomaterial discoveries that can trigger or block coagulation. Thromboinflammation is now understood to drive many disease states, and the SOA speakers cover cellular and coagulation responses to COVID-19 and other infections. The theme of crosstalk between coagulation and inflammation expands with capsules on protein S signaling, complement, and fibrinolytic inhibitors. Novel agents for hemophilia and thrombosis prevention are introduced. Challenging clinical conditions are also covered, such as inherited platelet disorders and antiphospholipid antibody syndrome. The scientific program in Bangkok will also showcase the work of clinicians and scientists from all parts of the world and chronicle real-world challenges. For example, 2 SOA capsules address the diagnosis and management of von Willebrand disease in low-income settings. Take some time to browse through these short illustrated reviews; we're sure that you'll be entertained, educated, and inspired to further explore the world of thrombosis and hemostasis.
RESUMEN
PURPOSE OF REVIEW: Activated or aged platelets are removed from circulation under (patho)physiologic conditions, the exact mechanism of platelet clearance under such conditions remains unclear and are currently being investigated. This review focuses on recent findings and controversies regarding platelet clearance and the disruption of platelet life cycle. RECENT FINDINGS: The platelet life span is determined by glycosylation of platelet surface receptors with sialic acid. Recently, it was shown that platelet activation and granule release leads to desialylation of glycans and accelerated clearance of platelets under pathological conditions. This phenomenon was demonstrated to be a main reason for thrombocytopenia being a complication in several infections and immune disorders. SUMMARY: Although we have recently gained some insight into how aged platelets are cleared from circulation, we are still not seeing the full picture. Further investigations of the platelet clearance pathways under pathophysiologic conditions are needed as well as studies to unravel the connection between platelet clearance and platelet production.
Asunto(s)
Plaquetas , Senescencia Celular , Citofagocitosis , Anciano , Humanos , Plaquetas/metabolismo , Plaquetas/fisiología , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos , Trombocitopenia/etiología , Trombocitopenia/metabolismo , Trombocitopenia/fisiopatología , Senescencia Celular/fisiología , Citofagocitosis/fisiologíaRESUMEN
During fibrosis, (myo)fibroblasts deposit large amounts of extracellular matrix proteins, thereby replacing healthy functional tissue. In liver fibrosis, this leads to the loss of hepatocyte function, portal hypertension, variceal bleeding, and increased susceptibility to infection. At an early stage, liver fibrosis is a dynamic and reversible process, however, from the cirrhotic stage, there is significant progression to hepatocellular carcinoma. Both liver-resident macrophages (Kupffer cells) and monocyte-derived macrophages are important drivers of fibrosis progression, but can also induce its regression once triggers of chronic inflammation are eliminated. In liver cancer, they are attracted to the tumor site to become tumor-associated macrophages (TAMs) polarized towards a M2- anti-inflammatory/tumor-promoting phenotype. Besides their role in thrombosis and hemostasis, platelets can also stimulate fibrosis and tumor development by secreting profibrogenic factors and regulating the innate immune response, e.g., by interacting with monocytes and macrophages. Here, we review recent literature on the role of macrophages and platelets and their interplay in liver fibrosis and hepatocellular carcinoma.
Asunto(s)
Carcinoma Hepatocelular , Várices Esofágicas y Gástricas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Várices Esofágicas y Gástricas/metabolismo , Várices Esofágicas y Gástricas/patología , Neoplasias Hepáticas/patología , Hemorragia Gastrointestinal , Cirrosis Hepática , Macrófagos , FibrosisRESUMEN
Intravital microscopy is a powerful tool to study thrombosis in real time. The kinetics of thrombus formation and progression in vivo is studied after inflicting damage to the endothelium through mechanical, chemical, or laser injury. Mouse models of atherosclerosis are also used to induce thrombus formation. Vessels of different sizes and from different vascular beds such as carotid artery or vena cava, mesenteric or cremaster arterioles, can be targeted. Using fluorescent dyes, antibodies, or reporter mouse strains allows to visualize key cells and factors mediating the thrombotic processes. Here, we review the latest literature on using intravital microscopy to study thrombosis as well as thromboinflammation following transient middle cerebral artery occlusion, infection-induced immunothrombosis, and liver ischemia reperfusion.
Asunto(s)
Trombosis , Animales , Ratones , Inflamación , Modelos Animales de Enfermedad , Microscopía Intravital , EndotelioRESUMEN
The gut microbiota influences intestinal barrier integrity through mechanisms that are incompletely understood. Here we show that the commensal microbiota weakens the intestinal barrier by suppressing epithelial neuropilin-1 (NRP1) and Hedgehog (Hh) signaling. Microbial colonization of germ-free mice dampens signaling of the intestinal Hh pathway through epithelial Toll-like receptor (TLR)-2, resulting in decreased epithelial NRP1 protein levels. Following activation via TLR2/TLR6, epithelial NRP1, a positive-feedback regulator of Hh signaling, is lysosomally degraded. Conversely, elevated epithelial NRP1 levels in germ-free mice are associated with a strengthened gut barrier. Functionally, intestinal epithelial cell-specific Nrp1 deficiency (Nrp1ΔIEC) results in decreased Hh pathway activity and a weakened gut barrier. In addition, Nrp1ΔIEC mice have a reduced density of capillary networks in their small intestinal villus structures. Collectively, our results reveal a role for the commensal microbiota and epithelial NRP1 signaling in the regulation of intestinal barrier function through postnatal control of Hh signaling.
Asunto(s)
Proteínas Hedgehog , Neuropilina-1 , Ratones , Animales , Neuropilina-1/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Células Epiteliales/metabolismo , Bacterias/metabolismoRESUMEN
Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic ß cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from ß cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet-derived lipid classes to promote insulin secretion and identified 20-Hydroxyeicosatetraenoic acid (20-HETE) as the main factor promoting ß cells function. Finally, we demonstrate that the levels of platelet-derived 20-HETE decline with age and that this parallels with reduced impact of platelets on ß cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals.
Asunto(s)
Células Secretoras de Insulina , Humanos , Secreción de Insulina , Insulina/metabolismo , Plaquetas , Glucosa/metabolismoRESUMEN
There is accumulating evidence that platelets play roles beyond their traditional functions in thrombosis and hemostasis, e.g., in inflammatory processes, infection and cancer, and that they interact, stimulate and regulate cells of the innate immune system such as neutrophils, monocytes and macrophages. In this review, we will focus on platelet activation in hemostatic and inflammatory processes, as well as platelet interactions with neutrophils and monocytes/macrophages. We take a closer look at the contributions of major platelet receptors GPIb, αIIbß3, TLT-1, CLEC-2 and Toll-like receptors (TLRs) as well as secretions from platelet granules on platelet-neutrophil aggregate and neutrophil extracellular trap (NET) formation in atherosclerosis, transfusion-related acute lung injury (TRALI) and COVID-19. Further, we will address platelet-monocyte and macrophage interactions during cancer metastasis, infection, sepsis and platelet clearance.
Asunto(s)
COVID-19 , Trombosis , Plaquetas/patología , Hemostasis , Humanos , Inmunidad Innata , Inflamación/patología , Neutrófilos/patología , Activación Plaquetaria , Tromboinflamación , Trombosis/patologíaRESUMEN
Contact activation refers to the process of surface-induced activation of factor XII (FXII), which initiates blood coagulation and is captured by the activated partial thromboplastin time (aPTT) assay. Here, we show the mechanism and diagnostic implications of FXII contact activation. Screening of recombinant FXII mutants identified a continuous stretch of residues Gln317-Ser339 that was essential for FXII surface binding and activation, thrombin generation and coagulation. Peptides spanning these 23 residues competed with surface-induced FXII activation. Although FXII mutants lacking residues Gln317-Ser339 were susceptible to activation by plasmin and plasma kallikrein, they were ineffective in supporting arterial and venous thrombus formation in mice. Antibodies raised against the Gln317-Ser339 region induced FXII activation and triggered controllable contact activation in solution leading to thrombin generation by the intrinsic pathway of coagulation. The antibody-activated aPTT allows for standardization of particulate aPTT reagents and for sensitive monitoring of coagulation factors VIII, IX, XI.
Asunto(s)
Coagulación Sanguínea , Factor XII/química , Factor XII/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/metabolismo , Factor XII/genética , Factor XII/inmunología , Factor XIIa/metabolismo , Ratones , Mutación , Tiempo de Tromboplastina Parcial/normas , Péptidos/química , Péptidos/genética , Péptidos/inmunología , Péptidos/metabolismo , Trombosis/diagnóstico , Trombosis/genética , Trombosis/metabolismoRESUMEN
BACKGROUND: Coagulopathy and inflammation are hallmarks of Coronavirus disease 2019 (COVID-19) and are associated with increased mortality. Clinical and experimental data have revealed a role for neutrophil extracellular traps (NETs) in COVID-19 disease. The mechanisms that drive thrombo-inflammation in COVID-19 are poorly understood. METHODS: We performed proteomic analysis and immunostaining of postmortem lung tissues from COVID-19 patients and patients with other lung pathologies. We further compared coagulation factor XII (FXII) and DNase activities in plasma samples from COVID-19 patients and healthy control donors and determined NET-induced FXII activation using a chromogenic substrate assay. FINDINGS: FXII expression and activity were increased in the lung parenchyma, within the pulmonary vasculature and in fibrin-rich alveolar spaces of postmortem lung tissues from COVID-19 patients. In agreement with this, plasmaaac acafajföeFXII activation (FXIIa) was increased in samples from COVID-19 patients. Furthermore, FXIIa colocalized with NETs in COVID-19 lung tissue indicating that NETs accumulation leads to FXII contact activation in COVID-19. We further showed that an accumulation of NETs is partially due to impaired NET clearance by extracellular DNases as DNase substitution improved NET dissolution and reduced FXII activation in vitro. INTERPRETATION: Collectively, our study supports that the NET/FXII axis contributes to the pathogenic chain of procoagulant and proinflammatory responses in COVID-19. Targeting both NETs and FXIIa may offer a potential novel therapeutic strategy. FUNDING: This study was supported by the European Union (840189), the Werner Otto Medical Foundation Hamburg (8/95) and the German Research Foundation (FR4239/1-1, A11/SFB877, B08/SFB841 and P06/KFO306).
Asunto(s)
COVID-19/metabolismo , Trampas Extracelulares/metabolismo , Factor XII/metabolismo , Autopsia , Estudios de Casos y Controles , Desoxirribonucleasas/sangre , Desoxirribonucleasas/metabolismo , Humanos , Pulmón/metabolismo , Activación Neutrófila , Neumonía , ProteómicaRESUMEN
Leukocytes are among the most mobile and versatile cells that have many essential functions in homeostasis and survival. Especially cells from the innate immune system, i.e., neutrophils and macrophages, play an important role as rapid first responders against invading microorganisms. With the advent of novel imaging techniques, new ways of visualizing innate immune cells have become available in recent years, thereby enabling more and more detailed discoveries about their nature, function and interaction partners. Besides intravital spinning-disc and 2-photon microscopy, clearing and 3D-imaging techniques provide new insights into the mechanism of innate immune cell behavior in their natural environment. This mini review focuses on the contributions of novel-imaging techniques to provide insight into the functions of neutrophils and macrophages under homeostasis and in infections. Imaging setups for different organs like the liver, kidney, heart, lung, and the peritoneal cavity are discussed as well as the current limitations of these imaging techniques.
RESUMEN
BACKGROUND AND AIMS: Kupffer cells (KCs) are the resident intravascular phagocyte population of the liver and critical to the capture and killing of bacteria. Calcineurin/nuclear factor of activated T cells (NFAT) inhibitors (CNIs) such as tacrolimus are used to prevent rejection in solid organ transplant recipients. Although their effect on lymphocytes has been studied extensively, there are limited experimental data about if and how CNIs shape innate immunity, and whether this contributes to the higher rates of infection observed in patients taking CNIs. APPROACH AND RESULTS: Here, we investigated the impact of tacrolimus treatment on innate immunity and, more specifically, on the capability of Kupffer cells (KCs) to fight infections. Retrospective analysis of data of >2,700 liver transplant recipients showed that taking calcineurin inhibitors such as tacrolimus significantly increased the likelihood of Staphylococcus aureus infection. Using a mouse model of acute methicillin-resistant S. aureus (MRSA) bacteremia, most bacteria were sequestered in the liver and we found that bacteria were more likely to disseminate and kill the host in tacrolimus-treated mice. Using imaging, we unveiled the mechanism underlying this observation: the reduced capability of KCs to capture, phagocytose, and destroy bacteria in tacrolimus-treated animals. Furthermore, in a gene expression analysis of infected KCs, the triggering receptor expressed on myeloid cells 1 (TREM1) pathway was the one with the most significant down-regulation after tacrolimus treatment. TREM1 inhibition likewise inhibited KC bacteria capture. TREM1 levels on neutrophils as well as the overall neutrophil response after infection were unaffected by tacrolimus treatment. CONCLUSIONS: Our results indicate that tacrolimus treatment has a significant impact directly on KCs and on TREM1, thereby compromising their capacity to fend off infections.
Asunto(s)
Bacteriemia/etiología , Inmunosupresores/efectos adversos , Macrófagos del Hígado/efectos de los fármacos , Trasplante de Órganos/efectos adversos , Infecciones Estafilocócicas/etiología , Tacrolimus/efectos adversos , Animales , Femenino , Citometría de Flujo , Humanos , Inmunosupresores/uso terapéutico , Macrófagos del Hígado/fisiología , Masculino , Staphylococcus aureus Resistente a Meticilina , Ratones , Persona de Mediana Edad , Trasplante de Órganos/métodos , Fagocitosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estudios Retrospectivos , Tacrolimus/uso terapéuticoRESUMEN
Platelets are increasingly being recognized for playing roles beyond thrombosis and hemostasis. Today we know that they mediate inflammation by direct interactions with innate immune cells or secretion of cytokines/chemokines. Here we review their interactions with neutrophils and monocytes/macrophages in infection and sepsis, stroke, myocardial infarction and venous thromboembolism. We discuss new roles for platelet surface receptors like GPVI or GPIb and also look at platelet contributions to the formation of neutrophil extracellular traps (NETs) as well as to deep vein thrombosis during infection, e.g. in COVID-19 patients.
Asunto(s)
Plaquetas/inmunología , COVID-19/inmunología , Infarto del Miocardio/inmunología , Neutrófilos/inmunología , Sepsis/inmunología , Accidente Cerebrovascular/inmunología , Tromboembolia Venosa/inmunología , Plaquetas/patología , COVID-19/genética , COVID-19/patología , COVID-19/virología , Comunicación Celular/genética , Comunicación Celular/inmunología , Citocinas/genética , Citocinas/inmunología , Trampas Extracelulares/genética , Trampas Extracelulares/inmunología , Regulación de la Expresión Génica , Humanos , Inflamación , Macrófagos/inmunología , Macrófagos/patología , Monocitos/inmunología , Monocitos/patología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Neutrófilos/patología , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/inmunología , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/inmunología , Sepsis/genética , Sepsis/patología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Tromboembolia Venosa/genética , Tromboembolia Venosa/patologíaRESUMEN
Polyphosphate is a procoagulant inorganic polymer of linear-linked orthophosphate residues. Multiple investigations have established the importance of platelet polyphosphate in blood coagulation; however, the mechanistic details of polyphosphate homeostasis in mammalian species remain largely undefined. In this study, xenotropic and polytropic retrovirus receptor 1 (XPR1) regulated polyphosphate in platelets and was implicated in thrombosis in vivo. We used bioinformatic analyses of omics data to identify XPR1 as a major phosphate transporter in platelets. XPR1 messenger RNA and protein expression inversely correlated with intracellular polyphosphate content and release. Pharmacological interference with XPR1 activity increased polyphosphate stores, led to enhanced platelet-driven coagulation, and amplified thrombus formation under flow via the polyphosphate/factor XII pathway. Conditional gene deletion of Xpr1 in platelets resulted in polyphosphate accumulation, accelerated arterial thrombosis, and augmented activated platelet-driven pulmonary embolism without increasing bleeding in mice. These data identify platelet XPR1 as an integral regulator of platelet polyphosphate metabolism and reveal a fundamental role for phosphate homeostasis in thrombosis.
Asunto(s)
Plaquetas/metabolismo , Polifosfatos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/metabolismo , Trombosis/metabolismo , Animales , Transporte Biológico , Coagulación Sanguínea , Factor XII/metabolismo , Femenino , Masculino , Ratones , Trombosis/sangre , Receptor de Retrovirus Xenotrópico y PolitrópicoRESUMEN
Neutrophil extracellular traps (NETs) and polyphosphates (polyP) have been recognized as procoagulant polyanions. This review summarizes the activities and regulation of the two procoagulant mediators and compares their functions. NETs are composed of DNA which like polyP is built of phosphate units linked by high-energy phosphoanhydride bonds. Both NETs and polyP form insoluble particulate surfaces composed of a DNA/histone meshwork or Ca2+-rich nanoparticles, respectively. These polyanionic molecules modulate coagulation involving an array of mechanisms and trigger thrombosis via activation of the factor XII-driven procoagulant and proinflammatory contact pathway. Here, we outline the current knowledge on NETs and polyP with respect to their procoagulant and prothrombotic nature, strategies for interference of their activities in circulation, as well as the crosstalk between these two molecules. A better understanding of the underlying, cellular mechanisms will shed light on the therapeutic potential of targeting NETs and polyP in coagulation and thrombosis.
Asunto(s)
Coagulación Sanguínea , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Polifosfatos/sangre , Trombosis/sangre , Animales , Coagulación Sanguínea/efectos de los fármacos , Trampas Extracelulares/efectos de los fármacos , Fibrinolíticos/uso terapéutico , Humanos , Neutrófilos/efectos de los fármacos , Polifosfatos/antagonistas & inhibidores , Transducción de Señal , Trombosis/tratamiento farmacológicoRESUMEN
Every day, megakaryocytes produce billions of platelets that circulate for several days and eventually are cleared by the liver. The exact removal mechanism, however, remains unclear. Loss of sialic acid residues is thought to feature in the aging and clearance of platelets. Using state-of-the-art spinning disk intravital microscopy to delineate the different compartments and cells of the mouse liver, we observed rapid accumulation of desialylated platelets predominantly on Kupffer cells, with only a few on endothelial cells and none on hepatocytes. Kupffer cell depletion prevented the removal of aged platelets from circulation. Ashwell-Morell receptor (AMR) deficiency alone had little effect on platelet uptake. Macrophage galactose lectin (MGL) together with AMR mediated clearance of desialylated or cold-stored platelets by Kupffer cells. Effective clearance is critical, as mice with an aged platelet population displayed a bleeding phenotype. Our data provide evidence that the MGL of Kupffer cells plays a significant role in the removal of desialylated platelets through a collaboration with the AMR, thereby maintaining a healthy and functional platelet compartment.
Asunto(s)
Asialoglicoproteínas/metabolismo , Plaquetas/metabolismo , Galactosa/metabolismo , Macrófagos del Hígado/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Fagocitosis , Animales , Anticuerpos/inmunología , Asialoglicoproteínas/inmunología , Células Cultivadas , Voluntarios Sanos , Humanos , Lectinas Tipo C/inmunología , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismoRESUMEN
Essentially all Staphylococcus aureus (S. aureus) bacteria that gain access to the circulation are plucked out of the bloodstream by the intravascular macrophages of the liver - the Kupffer cells. It is also thought that these bacteria are disseminated via the bloodstream to other organs. Our data show that S. aureus inside Kupffer cells grew and escaped across the mesothelium into the peritoneal cavity and immediately infected GATA-binding factor 6-positive (GATA6+) peritoneal cavity macrophages. These macrophages provided a haven for S. aureus, thereby delaying the neutrophilic response in the peritoneum by 48 hours and allowing dissemination to various peritoneal and retroperitoneal organs including the kidneys. In mice deficient in GATA6+ peritoneal macrophages, neutrophils infiltrated more robustly and reduced S. aureus dissemination. Antibiotics administered i.v. did not prevent dissemination into the peritoneum or to the kidneys, whereas peritoneal administration of vancomycin (particularly liposomal vancomycin with optimized intracellular penetrance capacity) reduced kidney infection and mortality, even when administered 24 hours after infection. These data indicate that GATA6+ macrophages within the peritoneal cavity are a conduit of dissemination for i.v. S. aureus, and changing the route of antibiotic delivery could provide a more effective treatment for patients with peritonitis-associated bacterial sepsis.
Asunto(s)
Factor de Transcripción GATA6/inmunología , Macrófagos Peritoneales/inmunología , Peritonitis/inmunología , Sepsis/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Animales , Femenino , Macrófagos Peritoneales/microbiología , Macrófagos Peritoneales/patología , Masculino , Ratones , Peritonitis/microbiología , Peritonitis/patología , Sepsis/microbiología , Sepsis/patología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patología , Vancomicina/farmacologíaRESUMEN
Macrophages play an important role in structural cardiac remodeling and the transition to heart failure following myocardial infarction (MI). Previous research has focused on the impact of blood-derived monocytes on cardiac repair. Here we examined the contribution of resident cavity macrophages located in the pericardial space adjacent to the site of injury. We found that disruption of the pericardial cavity accelerated maladaptive post-MI cardiac remodeling. Gata6+ macrophages in mouse pericardial fluid contributed to the reparative immune response. Following experimental MI, these macrophages invaded the epicardium and lost Gata6 expression but continued to perform anti-fibrotic functions. Loss of this specialized macrophage population enhanced interstitial fibrosis after ischemic injury. Gata6+ macrophages were present in human pericardial fluid, supporting the notion that this reparative function is relevant in human disease. Our findings uncover an immune cardioprotective role for the pericardial tissue compartment and argue for the reevaluation of surgical procedures that remove the pericardium.