Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011823

RESUMEN

Endoplasmic reticulum aminopeptidases ERAP1 and 2 are intracellular aminopeptidases that trim antigenic precursors and generate antigens presented by major histocompatibility complex class I (MHC-I) molecules. They thus modulate the antigenic repertoire and drive the adaptive immune response. ERAPs are considered as emerging targets for precision immuno-oncology or for the treatment of autoimmune diseases, in particular MHC-I-opathies. This perspective covers the structural and biological characterization of ERAP, their relevance to these diseases and the ongoing research on small-molecule inhibitors. We describe the chemical and pharmacological space explored by medicinal chemists to exploit the potential of these targets given their localization, biological functions, and family depth. Specific emphasis is put on the binding mode, potency, selectivity, and physchem properties of inhibitors featuring diverse scaffolds. The discussion provides valuable insights for the future development of ERAP inhibitors and analysis of persisting challenges for the translation for clinical applications.

2.
Br J Pharmacol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812293

RESUMEN

BACKGROUND AND PURPOSE: Nonalcoholic fatty liver disease refers to liver pathologies, ranging from steatosis to steatohepatitis, with fibrosis ultimately leading to cirrhosis and hepatocellular carcinoma. Although several mechanisms have been suggested, including insulin resistance, oxidative stress, and inflammation, its pathophysiology remains imperfectly understood. Over the last decade, a dysfunctional unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress emerged as one of the multiple driving factors. In parallel, growing evidence suggests that insulin-degrading enzyme (IDE), a highly conserved and ubiquitously expressed metallo-endopeptidase originally discovered for its role in insulin decay, may regulate ER stress and UPR. EXPERIMENTAL APPROACH: We investigated, by genetic and pharmacological approaches, in vitro and in vivo, whether IDE modulates ER stress-induced UPR and lipid accumulation in the liver. KEY RESULTS: We found that IDE-deficient mice display higher hepatic triglyceride content along with higher inositol-requiring enzyme 1 (IRE1) pathway activation. Upon induction of ER stress by tunicamycin or palmitate in vitro or in vivo, pharmacological inhibition of IDE, using its inhibitor BDM44768, mainly exacerbated ER stress-induced IRE1 activation and promoted lipid accumulation in hepatocytes, effects that were abolished by the IRE1 inhibitors 4µ8c and KIRA6. Finally, we identified that IDE knockout promotes lipolysis in adipose tissue and increases hepatic CD36 expression, which may contribute to steatosis. CONCLUSION AND IMPLICATIONS: These results unravel a novel role for IDE in the regulation of ER stress and development of hepatic steatosis. These findings pave the way to innovative strategies modulating IDE to treat metabolic diseases.

3.
J Med Chem ; 66(17): 11732-11760, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37639383

RESUMEN

A novel series of potent agonists of the bile acid receptor TGR5 bearing a dihydropyridone scaffold was developed from a high-throughput screen. Starting from a micromolar hit compound, we implemented an extensive structure-activity-relationship (SAR) study with the synthesis and biological evaluation of 83 analogues. The project culminated with the identification of the potent nanomolar TGR5 agonist 77A. We report the GLP-1 secretagogue effect of our lead compound ex vivo in mouse colonoids and in vivo. In addition, to identify specific features favorable for TGR5 activation, we generated and optimized a three-dimensional quantitative SAR model that contributed to our understanding of our activity profile and could guide further development of this dihydropyridone series.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Factores de Transcripción , Animales , Ratones , Péptido 1 Similar al Glucagón , Ácidos y Sales Biliares
4.
J Med Chem ; 65(24): 16392-16419, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36450011

RESUMEN

Metallo-ß-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition (Ki = 10-30 nM). Equilibrium dialysis, native mass spectrometry, isothermal calorimetry (ITC), and X-ray crystallography showed that the compounds inhibited both VIM-2 and NDM-1 at least partially by stripping the catalytic zinc ions. These inhibitors also displayed a very potent synergistic activity with meropenem (16- to 1000-fold minimum inhibitory concentration (MIC) reduction) against VIM-type- and NDM-1-producing ultraresistant clinical isolates, including Enterobacterales and Pseudomonas aeruginosa. Furthermore, selected compounds exhibited no or moderate toxicity toward HeLa cells, favorable absorption, distribution, metabolism, excretion (ADME) properties, and no or modest inhibition of several mammalian metalloenzymes.


Asunto(s)
Tionas , Inhibidores de beta-Lactamasas , Humanos , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/química , Tionas/farmacología , Células HeLa , Antibacterianos/farmacología , Antibacterianos/química , beta-Lactamasas/metabolismo , Pruebas de Sensibilidad Microbiana
5.
Angew Chem Int Ed Engl ; 61(39): e202203560, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35904863

RESUMEN

Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a key enzyme involved in the trimming of antigenic peptides presented by Major Histocompatibility Complex class I. It is a target of growing interest for the treatment of autoimmune diseases and in cancer immunotherapy. However, the discovery of potent and selective ERAP2 inhibitors is highly challenging. Herein, we have used kinetic target-guided synthesis (KTGS) to identify such inhibitors. Co-crystallization experiments revealed the binding mode of three different inhibitors with increasing potency and selectivity over related enzymes. Selected analogues engage ERAP2 in cells and inhibit antigen presentation in a cellular context. 4 d (BDM88951) displays favorable in vitro ADME properties and in vivo exposure. In summary, KTGS allowed the discovery of the first nanomolar and selective highly promising ERAP2 inhibitors that pave the way of the exploration of the biological roles of this enzyme and provide lead compounds for drug discovery efforts.


Asunto(s)
Aminopeptidasas , Presentación de Antígeno , Aminopeptidasas/metabolismo , Antígenos de Histocompatibilidad Clase I , Péptidos/metabolismo
6.
Cells ; 11(7)2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35406791

RESUMEN

Insulin-degrading enzyme (IDE) is a multifunctional protease due to the variety of its substrates, its various cellular locations, its conservation between species and its many non-proteolytic functions. Numerous studies have successfully demonstrated its implication in two main therapeutic areas: metabolic and neuronal diseases. In recent years, several reports have underlined the overexpression of this enzyme in different cancers. Still, the exact role of IDE in the physiopathology of cancer remains to be elucidated. Known as the main enzyme responsible for the degradation of insulin, an essential growth factor for healthy cells and cancer cells, IDE has also been shown to behave like a chaperone and interact with the proteasome. The pharmacological modulation of IDE (siRNA, chemical compounds, etc.) has demonstrated interesting results in cancer models. All these results point towards IDE as a potential target in cancer. In this review, we will discuss evidence of links between IDE and cancer development or resistance, IDE's functions, catalytic or non-catalytic, in the context of cell proliferation, cancer development and the impact of the pharmacomodulation of IDE via cancer therapeutics.


Asunto(s)
Insulisina , Neoplasias , Insulina/metabolismo , Insulisina/genética , Neoplasias/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal
7.
Eur J Med Chem ; 228: 113982, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34815130

RESUMEN

Insulin degrading enzyme (IDE) is a zinc metalloprotease that cleaves numerous substrates among which amyloid-ß and insulin. It has been linked through genetic studies to the risk of type-2 diabetes (T2D) or Alzheimer's disease (AD). Pharmacological activation of IDE is an attractive therapeutic strategy in AD. While IDE inhibition gave paradoxal activity in glucose homeostasis, recent studies, in particular in the liver suggest that IDE activators could be also of interest in diabetes. Here we describe the discovery of an original series of IDE activators by screening and structure-activity relationships. Early cellular studies show that hit 1 decreases glucose-stimulating insulin secretion. Docking studies revealed it has an unprecedented extended binding to the polyanion-binding site of IDE. These indole-based pharmacological tools are activators of both Aß and insulin hydrolysis by IDE and could be helpful to explore the multiple roles of IDE.


Asunto(s)
Indoles/farmacología , Insulisina/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Indoles/química , Ratones , Modelos Moleculares , Estructura Molecular , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
8.
Molecules ; 26(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641626

RESUMEN

Chemical biology and drug discovery are two scientific activities that pursue different goals but complement each other. The former is an interventional science that aims at understanding living systems through the modulation of its molecular components with compounds designed for this purpose. The latter is the art of designing drug candidates, i.e., molecules that act on selected molecular components of human beings and display, as a candidate treatment, the best reachable risk benefit ratio. In chemical biology, the compound is the means to understand biology, whereas in drug discovery, the compound is the goal. The toolbox they share includes biological and chemical analytic technologies, cell and whole-body imaging, and exploring the chemical space through state-of-the-art design and synthesis tools. In this article, we examine several tools shared by drug discovery and chemical biology through selected examples taken from research projects conducted in our institute in the last decade. These examples illustrate the design of chemical probes and tools to identify and validate new targets, to quantify target engagement in vitro and in vivo, to discover hits and to optimize pharmacokinetic properties with the control of compound concentration both spatially and temporally in the various biophases of a biological system.


Asunto(s)
Descubrimiento de Drogas/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Química Farmacéutica , Diseño de Fármacos , Francia , Humanos , Estructura Molecular , Terapia Molecular Dirigida/métodos , Bibliotecas de Moléculas Pequeñas/química
9.
J Med Chem ; 63(8): 3817-3833, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31820982

RESUMEN

Kinetic target-guided synthesis (KTGS) is an original discovery strategy allowing a target to catalyze the irreversible synthesis of its own ligands from a pool of reagents. Although pioneered almost two decades ago, it only recently proved its usefulness in medicinal chemistry, as exemplified by the increasing number of protein targets used, the wider range of target and pocket types, and the diversity of therapeutic areas explored. In recent years, two new leads for in vivo studies were released. Amidations and multicomponent reactions expanded the armamentarium of reactions beyond triazole formation and two new examples of in cellulo KTGS were also disclosed. Herein, we analyze the origins and the chemical space of both KTGS ligands and warhead-bearing reagents. We review the KTGS timeline focusing on recent cases in order to give medicinal chemists the full scope of this strategy which has great potential for hit discovery and hit or lead optimization.


Asunto(s)
Química Farmacéutica/tendencias , Sistemas de Liberación de Medicamentos/tendencias , Descubrimiento de Drogas/tendencias , Inhibidores de Proteasas/química , Inhibidores de la Síntesis de la Proteína/química , Animales , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Humanos , Cinética , Inhibidores de Proteasas/administración & dosificación , Inhibidores de Proteasas/farmacocinética , Inhibidores de la Síntesis de la Proteína/administración & dosificación , Inhibidores de la Síntesis de la Proteína/farmacocinética
10.
SLAS Discov ; 25(2): 207-214, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31885312

RESUMEN

In the last 5 years, cellular thermal shift assay (CETSA), a technology based on ligand-induced changes in protein thermal stability, has been increasingly used in drug discovery to address the fundamental question of whether drug candidates engage their intended target in a biologically relevant setting. To analyze lysates from cells submitted to increasing temperature, the detection and quantification of the remaining soluble protein can be achieved using quantitative mass spectrometry, Western blotting, or AlphaScreen techniques. Still, these approaches can be time- and cell-consuming. To cope with limitations of throughput and protein amount requirements, we developed a new coupled assay combining the advantages of a nanoacoustic transfer system and reverse-phase protein array technology within CETSA experiments. We validated the technology to assess engagement of inhibitors of insulin-degrading enzyme (IDE), an enzyme involved in diabetes and Alzheimer's disease. CETSA-acoustic reverse-phase protein array (CETSA-aRPPA) allows simultaneous analysis of many conditions and drug-target engagement with a small sample size, in a rapid, cost-effective, and biological material-saving manner.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento/métodos , Análisis por Matrices de Proteínas/métodos , Proteínas/genética , Acústica , Línea Celular Tumoral , Humanos , Ligandos , Preparaciones Farmacéuticas/química , Proteínas/aislamiento & purificación
11.
Eur J Med Chem ; 179: 557-566, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31276900

RESUMEN

Insulin-degrading enzyme, IDE, is a metalloprotease implicated in the metabolism of key peptides such as insulin, glucagon, ß-amyloid peptide. Recent studies have pointed out its broader role in the cell physiology. In order to identify new drug-like inhibitors of IDE with optimal pharmacokinetic properties to probe its multiple roles, we ran a high-throughput drug repurposing screening. Ebselen, cefmetazole and rabeprazole were identified as reversible inhibitors of IDE. Ebselen is the most potent inhibitor (IC50(insulin) = 14 nM). The molecular mode of action of ebselen was investigated by biophysical methods. We show that ebselen induces the disorder of the IDE catalytic cleft, which significantly differs from the previously reported IDE inhibitors. IDE inhibition by ebselen can explain some of its reported activities in metabolism as well as in neuroprotection.


Asunto(s)
Azoles/farmacología , Reposicionamiento de Medicamentos , Inhibidores Enzimáticos/farmacología , Insulisina/antagonistas & inhibidores , Compuestos de Organoselenio/farmacología , Azoles/química , Biocatálisis , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Insulisina/metabolismo , Isoindoles , Estructura Molecular , Compuestos de Organoselenio/química , Relación Estructura-Actividad
12.
Elife ; 72018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29596046

RESUMEN

Insulin degrading enzyme (IDE) plays key roles in degrading peptides vital in type two diabetes, Alzheimer's, inflammation, and other human diseases. However, the process through which IDE recognizes peptides that tend to form amyloid fibrils remained unsolved. We used cryoEM to understand both the apo- and insulin-bound dimeric IDE states, revealing that IDE displays a large opening between the homologous ~55 kDa N- and C-terminal halves to allow selective substrate capture based on size and charge complementarity. We also used cryoEM, X-ray crystallography, SAXS, and HDX-MS to elucidate the molecular basis of how amyloidogenic peptides stabilize the disordered IDE catalytic cleft, thereby inducing selective degradation by substrate-assisted catalysis. Furthermore, our insulin-bound IDE structures explain how IDE processively degrades insulin by stochastically cutting either chain without breaking disulfide bonds. Together, our studies provide a mechanism for how IDE selectively degrades amyloidogenic peptides and offers structural insights for developing IDE-based therapies.


Asunto(s)
Insulina/química , Insulina/metabolismo , Insulisina/química , Insulisina/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Espectrometría de Masas , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteolisis , Dispersión del Ángulo Pequeño
13.
J Med Chem ; 60(21): 9067-9089, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-28985084

RESUMEN

Hydroxamic acids are outstanding zinc chelating groups that can be used to design potent and selective metalloenzyme inhibitors in various therapeutic areas. Some hydroxamic acids display a high plasma clearance resulting in poor in vivo activity, though they may be very potent compounds in vitro. We designed a 57-member library of hydroxamic acids to explore the structure-plasma stability relationships in these series and to identify which enzyme(s) and which pharmacophores are critical for plasma stability. Arylesterases and carboxylesterases were identified as the main metabolic enzymes for hydroxamic acids. Finally, we suggest structural features to be introduced or removed to improve stability. This work thus provides the first medicinal chemistry toolbox (experimental procedures and structural guidance) to assess and control the plasma stability of hydroxamic acids and realize their full potential as in vivo pharmacological probes and therapeutic agents. This study is particularly relevant to preclinical development as it allows obtaining compounds equally stable in human and rodent models.


Asunto(s)
Ácidos Hidroxámicos/química , Plasma/química , Bibliotecas de Moléculas Pequeñas , Animales , Hidrolasas de Éster Carboxílico , Estabilidad de Medicamentos , Humanos , Tasa de Depuración Metabólica , Ratones , Plasma/enzimología , Ratas , Relación Estructura-Actividad
14.
ACS Med Chem Lett ; 8(3): 333-337, 2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28337326

RESUMEN

Endoplasmic reticulum aminopeptidase 2 assists with the generation of antigenic peptides for presentation onto Major Histocompatibility Class I molecules in humans. Recent evidence has suggested that the activity of ERAP2 may contribute to the generation of autoimmunity, thus making ERAP2 a possible pharmacological target for the regulation of adaptive immune responses. To better understand the structural elements of inhibitors that govern their binding affinity to the ERAP2 active site, we cocrystallized ERAP2 with a medium activity 3,4-diaminobenzoic acid inhibitor and a poorly active hydroxamic acid derivative. Comparison of these two crystal structures with a previously solved structure of ERAP2 in complex with a potent phosphinic pseudopeptide inhibitor suggests that engaging the substrate N-terminus recognition properties of the active site is crucial for inhibitor binding even in the absence of a potent zinc-binding group. Proper utilization of all five major pharmacophores is necessary, however, to optimize inhibitor potency.

15.
Thromb Haemost ; 116(4): 694-704, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27383908

RESUMEN

Enhanced expression of the aggrecanase ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin type 1 motifs; member 5) has been observed in adipose tissue (AT) of obese rodents. Here, we have investigated the role of ADAMTS5 in adipogenesis, AT expansion and associated angiogenesis. In vitro differentiation of precursor cells into mature adipocytes was studied using murine embryonic fibroblasts (MEF) derived from wild-type (Adamts5(+/+)) and ADAMTS5 deficient (Adamts5(-/-)) mice, or 3T3-F442A preadipocytes with stable gene silencing of Adamts5. De novo adipogenesis was monitored by injection of 3T3-F442A cells with or without Adamts5 knockdown in Nude mice. Furthermore, Adamts5(+/+)and Adamts5(-/-) mice were kept on a high-fat diet (HFD) to monitor AT development. Adamts5(-/-) MEF, as well as 3T3-F442A preadipocytes with Adamts5 knockdown, showed significantly reduced differentiation as compared to control cells. In mice, de novo formed fat pads arising from 3T3-F442A cells with Adamts5 knockdown were significantly smaller as compared to controls. After 15 or 25 weeks on HFD, total body weight and subcutaneous AT weight were similar for Adamts5(+/+) and Adamts5(-/-) mice, but visceral/gonadal fat mass was significantly lower for Adamts5(-/-) mice. These data were confirmed by magnetic resonance imaging. In addition, the blood vessel density in adipose tissue was higher for Adamts5(-/-) mice kept on HFD. In conclusion, our data support the concept that ADAMTS5 promotes adipogenesis in vitro and in vivo, as well as development of visceral AT and associated angiogenesis in mice kept on HFD.


Asunto(s)
Proteína ADAMTS5/genética , Adipogénesis , Grasa Intraabdominal/crecimiento & desarrollo , Adipocitos/citología , Animales , Diferenciación Celular , Células Cultivadas , Fibroblastos/citología , Ratones , Ratones Noqueados , Ratones Desnudos
16.
Future Med Chem ; 8(4): 381-404, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26877247

RESUMEN

For the last 15 years, kinetic target-guided syntheses, including in situ click chemistry, have been used as alternative methods to find ligands to therapeutically relevant proteins. In this review, a comprehensive survey of biological targets used in kinetic target-guided synthesis covers historical and recent examples. The chemical reactions employed and practical aspects, including controls, library sizes and product detection, are presented. A particular focus is on the reagents and warhead selection and design with a critical overview of the challenges encountered. As protein supply remains a key success factor, it appears that increased efforts should be taken toward miniaturization in order to expand the scope of this strategy and qualify it as a fully fledged drug discovery tool.


Asunto(s)
Descubrimiento de Drogas , Preparaciones Farmacéuticas/síntesis química , Química Clic , Humanos , Cinética , Ligandos , Preparaciones Farmacéuticas/química , Proteínas , Encuestas y Cuestionarios
17.
Nat Commun ; 6: 8250, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26394692

RESUMEN

Insulin-degrading enzyme (IDE) is a protease that cleaves insulin and other bioactive peptides such as amyloid-ß. Knockout and genetic studies have linked IDE to Alzheimer's disease and type-2 diabetes. As the major insulin-degrading protease, IDE is a candidate drug target in diabetes. Here we have used kinetic target-guided synthesis to design the first catalytic site inhibitor of IDE suitable for in vivo studies (BDM44768). Crystallographic and small angle X-ray scattering analyses show that it locks IDE in a closed conformation. Among a panel of metalloproteases, BDM44768 selectively inhibits IDE. Acute treatment of mice with BDM44768 increases insulin signalling and surprisingly impairs glucose tolerance in an IDE-dependent manner. These results confirm that IDE is involved in pathways that modulate short-term glucose homeostasis, but casts doubt on the general usefulness of the inhibition of IDE catalytic activity to treat diabetes.


Asunto(s)
Ácidos Hidroxámicos/síntesis química , Insulisina/antagonistas & inhibidores , Triazoles/síntesis química , Animales , Células CACO-2 , Dominio Catalítico , Diabetes Mellitus/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Prueba de Tolerancia a la Glucosa , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos , Terapia Molecular Dirigida , Distribución Aleatoria , Relación Estructura-Actividad , Triazoles/farmacología , Triazoles/uso terapéutico
18.
Eur J Med Chem ; 90: 547-67, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25489670

RESUMEN

Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role.


Asunto(s)
Carbamatos/farmacología , Ácidos Carboxílicos/química , Inhibidores Enzimáticos/farmacología , Imidazoles/química , Insulisina/antagonistas & inhibidores , Insulisina/metabolismo , Oxadiazoles/farmacología , Carbamatos/síntesis química , Carbamatos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Relación Estructura-Actividad
19.
Future Med Chem ; 6(12): 1399-412, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25329196

RESUMEN

Over the last decade, there has been a large effort to target aggrecanases, which are responsible for the degradation of the aggrecan in the extracellular matrix of joints, in order to hopefully lead to new treatments for osteoarthritis. Only a few inhibitors have been effective in explants or rodent models and thus only a few have reached the clinic, none of which have proven to be effective. In this article, a survey of chemical series is described, covering historical and recent inhibitors and highlighting how some of their problems were resolved, with a critical overview of the challenges encountered. A large effort should be undertaken in designing smaller compounds with higher residence times, defining new interaction sites on the aggrecanases and exploiting target flexibility.


Asunto(s)
Endopeptidasas/metabolismo , Osteoartritis/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Osteoartritis/enzimología , Osteoartritis/metabolismo , Inhibidores de Proteasas/química , Relación Estructura-Actividad
20.
Eur J Med Chem ; 79: 184-93, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24735644

RESUMEN

Insulin degrading enzyme (IDE) is a highly conserved zinc metalloprotease that is involved in the clearance of various physiologically peptides like amyloid-beta and insulin. This enzyme has been involved in the physiopathology of diabetes and Alzheimer's disease. We describe here a series of small molecules discovered by screening. Co-crystallization of the compounds with IDE revealed a binding both at the permanent exosite and at the discontinuous, conformational catalytic site. Preliminary structure-activity relationships are described. Selective inhibition of amyloid-beta degradation over insulin hydrolysis was possible. Neuroblastoma cells treated with the optimized compound display a dose-dependent increase in amyloid-beta levels.


Asunto(s)
Acetatos/farmacología , Péptidos beta-Amiloides/antagonistas & inhibidores , Imidazoles/química , Insulisina/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Acetatos/síntesis química , Acetatos/química , Péptidos beta-Amiloides/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Hidrólisis , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...