Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Surg Pathol ; 48(7): 839-845, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38764379

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) develops from 2 known precursor lesions: a majority (∼85%) develops from pancreatic intraepithelial neoplasia (PanIN), and a minority develops from intraductal papillary mucinous neoplasms (IPMNs). Clinical classification of PanIN and IPMN relies on a combination of low-resolution, 3-dimensional (D) imaging (computed tomography, CT), and high-resolution, 2D imaging (histology). The definitions of PanIN and IPMN currently rely heavily on size. IPMNs are defined as macroscopic: generally >1.0 cm and visible in CT, and PanINs are defined as microscopic: generally <0.5 cm and not identifiable in CT. As 2D evaluation fails to take into account 3D structures, we hypothesized that this classification would fail in evaluation of high-resolution, 3D images. To characterize the size and prevalence of PanINs in 3D, 47 thick slabs of pancreas were harvested from grossly normal areas of pancreatic resections, excluding samples from individuals with a diagnosis of an IPMN. All patients but one underwent preoperative CT scans. Through construction of cellular resolution 3D maps, we identified >1400 ductal precursor lesions that met the 2D histologic size criteria of PanINs. We show that, when 3D space is considered, 25 of these lesions can be digitally sectioned to meet the 2D histologic size criterion of IPMN. Re-evaluation of the preoperative CT images of individuals found to possess these large precursor lesions showed that nearly half are visible on imaging. These findings demonstrate that the clinical classification of PanIN and IPMN fails in evaluation of high-resolution, 3D images, emphasizing the need for re-evaluation of classification guidelines that place significant weight on 2D assessment of 3D structures.


Asunto(s)
Carcinoma Ductal Pancreático , Imagenología Tridimensional , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/clasificación , Neoplasias Intraductales Pancreáticas/patología , Neoplasias Intraductales Pancreáticas/diagnóstico por imagen , Femenino , Carcinoma in Situ/patología , Carcinoma in Situ/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Anciano , Tomografía Computarizada por Rayos X , Carga Tumoral , Valor Predictivo de las Pruebas
2.
Pancreas ; 53(2): e180-e186, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194643

RESUMEN

OBJECTIVE: The aim of the study is to assess the relationship between magnetic resonance imaging (MRI)-based estimation of pancreatic fat and histology-based measurement of pancreatic composition. MATERIALS AND METHODS: In this retrospective study, MRI was used to noninvasively estimate pancreatic fat content in preoperative images from high-risk individuals and disease controls having normal pancreata. A deep learning algorithm was used to label 11 tissue components at micron resolution in subsequent pancreatectomy histology. A linear model was used to determine correlation between histologic tissue composition and MRI fat estimation. RESULTS: Twenty-seven patients (mean age 64.0 ± 12.0 years [standard deviation], 15 women) were evaluated. The fat content measured by MRI ranged from 0% to 36.9%. Intrapancreatic histologic tissue fat content ranged from 0.8% to 38.3%. MRI pancreatic fat estimation positively correlated with microanatomical composition of fat (r = 0.90, 0.83 to 0.95], P < 0.001); as well as with pancreatic cancer precursor ( r = 0.65, P < 0.001); and collagen ( r = 0.46, P < 0.001) content, and negatively correlated with pancreatic acinar ( r = -0.85, P < 0.001) content. CONCLUSIONS: Pancreatic fat content, measurable by MRI, correlates to acinar content, stromal content (fibrosis), and presence of neoplastic precursors of cancer.


Asunto(s)
Tejido Adiposo , Imagen por Resonancia Magnética , Páncreas Exocrino , Anciano , Femenino , Humanos , Persona de Mediana Edad , Tejido Adiposo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Páncreas/diagnóstico por imagen , Páncreas/patología , Páncreas Exocrino/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Estudios Retrospectivos
3.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38106004

RESUMEN

Kidneys are among the most structurally complex organs in the body. Their architecture is critical to ensure proper function and is often impacted by diseases such as diabetes and hypertension. Understanding the spatial interplay between the different structures of the nephron and renal vasculature is crucial. Recent efforts have demonstrated the value of three-dimensional (3D) imaging in revealing new insights into the various components of the kidney; however, these studies used antibodies or autofluorescence to detect structures and so were limited in their ability to compare the many subtle structures of the kidney at once. Here, through 3D reconstruction of fetal rhesus macaque kidneys at cellular resolution, we demonstrate the power of deep learning in exhaustively labelling seventeen microstructures of the kidney. Using these tissue maps, we interrogate the spatial distribution and spatial correlation of the glomeruli, renal arteries, and the nephron. This work demonstrates the power of deep learning applied to 3D tissue images to improve our ability to compare many microanatomical structures at once, paving the way for further works investigating renal pathologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA