Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(26): 6410-6421, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38900154

RESUMEN

AOT reverse micelles are a common and convenient model system for studying the effects of nanoconfinement on aqueous solutions. The reverse micelle shape is important to understanding how the constituent components come together to form the coherent whole and the unique properties observed there. The shape of reverse micelles impacts the amount of interface present and the distance of the solute from the interface and is therefore vital to understanding interfacial properties and the behavior of solutes in the polar core. In this work, we use previously introduced measures of shape, the coordinate-pair eccentricity (CPE) and convexity, and apply them to a series of simulations of AOT reverse micelles. We simulate the most commonly used force field for AOT reverse micelles, the CHARMM force field, but we also adapt the OPLS force field for use with AOT, the first work to do so, in addition to using both 3- and 4-site water models. Altogether, these simulations are designed to examine the impact of the force field on the shape of the reverse micelles in detail. We also study the time autocorrelation of shape, the water rotational anisotropy decay, and how the CPE changes between the water pool and AOT tail groups. We find that although the force field changes the shape noticeably, AOT reverse micelles are always amorphous particles. The shape of the micelles changes on the order of 10 ns. The water rotational dynamics observed match the experiment and demonstrate slower dynamics relative to bulk water, suggesting a two-population model that fits a core/shell hypothesis. Taken together, our results indicate that it is likely not possible to create a perfect force field that can reproduce every aspect of the AOT reverse micelle accurately. However, the magnitude of the differences between simulations appears relatively small, suggesting that any reasonably derived force field should provide an acceptable model for most work on AOT reverse micelles.

2.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659864

RESUMEN

Metabotropic glutamate receptors (mGluRs) are class C G protein-coupled receptors that function as obligate dimers in regulating neurotransmission and synaptic plasticity in the central nervous system. The mGluR1 subtype has been shown to be modulated by the membrane lipid environment, particularly cholesterol, though the molecular mechanisms remain elusive. In this study, we employed all-atom molecular dynamics simulations to investigate the effects of cholesterol on the conformational dynamics of the mGluR1 seven-transmembrane (7TM) domain in an inactive state model. Simulations were performed with three different cholesterol concentrations (0%, 10%, and 25%) in a palmitoyl-oleoyl phosphatidylcholine (POPC) lipid bilayer system. Our results demonstrate that cholesterol induces conformational changes in the mGluR1 dimer more significantly than in the individual protomers. Notably, cholesterol modulates the dynamics and conformations of the TM1 and TM2 helices at the dimer interface. Interestingly, an intermediate cholesterol concentration of 10% elicits more pronounced conformational changes compared to both cholesterol-depleted (0%) and cholesterol-enriched (25%) systems. Specific electrostatic interaction unique to the 10% cholesterol system further corroborate these conformational differences. Given the high sequence conservation of the 7TM domains across mGluR subtypes, the cholesterol-dependent effects observed in mGluR1 are likely applicable to other members of this receptor family. Our findings provide atomistic insights into how cholesterol modulates the conformational landscape of mGluRs, which could impact their function and signaling mechanisms.

3.
J Phys Chem B ; 126(4): 953-963, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35080415

RESUMEN

Aerosol-OT reverse micelles represent a chemical construct where surfactant molecules self-assemble to stabilize water nanodroplets 1-10 nm in diameter. Although commonly assumed to adopt a spherical shape, all-atom molecular dynamics simulations and some experimental studies predict a nonspherical shape. If these aggregates are not spherical, then what shape do they take? Because the tools needed to evaluate the shape of something that lacks regular structure, order, or symmetry are not well developed, we present a set of three intuitive metrics─coordinate-pair eccentricity, convexity, and the curvature distribution─that estimate the shape of an amorphous object, and we demonstrate their use on a simulated aerosol-OT reverse micelle. These metrics are all well-established methods and principles in mathematics, and each provides unique information about the shape. Together, these metrics provide intuitive descriptions of amorphous shapes, facilitate ways to quantify those shapes, and follow their changes over time.


Asunto(s)
Ácido Dioctil Sulfosuccínico , Micelas , Ácido Dioctil Sulfosuccínico/química , Simulación de Dinámica Molecular , Tensoactivos/química , Agua/química
4.
J Phys Chem A ; 120(25): 4277-84, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27232375

RESUMEN

We recently reported a study of the steric effect on the 1° isotope dependence of 2° KIEs for several hydride-transfer reactions in solution (J. Am. Chem. Soc. 2015, 137, 6653). The unusual 2° KIEs decrease as the 1° isotope changes from H to D, and more in the sterically hindered systems. These were explained in terms of a more crowded tunneling ready state (TRS) conformation in D-tunneling, which has a shorter donor-acceptor distance (DAD) than in H-tunneling. To examine the isotopic DAD difference explanation, in this paper, following an activated motion-assisted H-tunneling model that requires a shorter DAD in a heavier isotope transfer process, we computed the 2° KIEs at various H/D positions at different DADs (2.9 Å to 3.5 Å) for the hydride-transfer reactions from 2-propanol to the xanthylium and thioxanthylium ions (Xn(+) and TXn(+)) and their 9-phenyl substituted derivatives (Ph(T)Xn(+)). The calculated 2° KIEs match the experiments and the calculated DAD effect on the 2° KIEs fits the observed 1° isotope effect on the 2° KIEs. These support the motion-assisted H-tunneling model and the isotopically different TRS conformations. Furthermore, it was found that the TRS of the sterically hindered Ph(T)Xn(+) system does not possess a longer DAD than that of the (T)Xn(+) system. This predicts a no larger 1° KIE in the former system than in the latter. The observed 1° KIE order is, however, contrary to the prediction. This implicates the stronger DAD-compression vibrations coupled to the bulky Ph(T)Xn(+) reaction coordinate.

5.
J Am Chem Soc ; 137(20): 6653-61, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-25941865

RESUMEN

The observed 1° isotope effect on 2° KIEs in H-transfer reactions has recently been explained on the basis of a H-tunneling mechanism that uses the concept that the tunneling of a heavier isotope requires a shorter donor-acceptor distance (DAD) than that of a lighter isotope. The shorter DAD in D-tunneling, as compared to H-tunneling, could bring about significant spatial crowding effect that stiffens the 2° H/D vibrations, thus decreasing the 2° KIE. This leads to a new physical organic research direction that examines how structure affects the 1° isotope dependence of 2° KIEs and how this dependence provides information about the structure of the tunneling ready states (TRSs). The hypothesis is that H- and D-tunneling have TRS structures which have different DADs, and pronounced 1° isotope effect on 2° KIEs should be observed in tunneling systems that are sterically hindered. This paper investigates the hypothesis by determining the 1° isotope effect on α- and ß-2° KIEs for hydride transfer reactions from various hydride donors to different carbocationic hydride acceptors in solution. The systems were designed to include the interactions of the steric groups and the targeted 2° H/D's in the TRSs. The results substantiate our hypothesis, and they are not consistent with the traditional model of H-tunneling and 1°/2° H coupled motions that has been widely used to explain the 1° isotope dependence of 2° KIEs in the enzyme-catalyzed H-transfer reactions. The behaviors of the 1° isotope dependence of 2° KIEs in solution are compared to those with alcohol dehydrogenases, and sources of the observed "puzzling" 2° KIE behaviors in these enzymes are discussed using the concept of the isotopically different TRS conformations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...