Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Plants (Basel) ; 13(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38202399

RESUMEN

In agriculture, soil amendments are applied to improve soil quality by increasing the water retention capacity and regulating the pH and ion exchange. Our study was carried out to investigate the impact of a commercial biochar (Bc) and a superabsorbent polymer (SAP) on the physiological and biochemical processes and the growth performance of Chenopodium quinoa (variety ICBA-5) when exposed to high salinity. Plants were grown for 25 days under controlled greenhouse conditions in pots filled with a soil mixture with or without 3% Bc or 0.2% SAP by volume before the initiation of 27 days of growth in hypersaline conditions, following the addition of 300 mM NaCl. Without the Bc or soil amendments, multiple negative effects of hypersalinity were detected on photosynthetic CO2 assimilation (Anet minus 70%) and on the production of fresh matter from the whole plant, leaves, stems and roots (respectively, 55, 46, 64 and 66%). Moreover, increased generation of reactive oxygen species (ROS) was indicated by higher levels of MDA (plus 142%), antioxidant activities and high proline levels (plus 311%). In the pots treated with 300 mM NaCl, the amendments Bc or SAP improved the plant growth parameters, including fresh matter production (by 10 and 17%), an increased chlorophyll content by 9 and 13% and Anet in plants (by 98 and 115%). Both amendments (Bc and SAP) resulted in significant salinity mitigation effects, decreasing proline and malondialdehyde (MDA) levels whilst increasing both the activity of enzymatic antioxidants and non-enzymatic antioxidants that reduce the levels of ROS. This study confirms how soil amendments can help to improve plant performance and expand the productive range into saline areas.

2.
Plants (Basel) ; 11(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36145812

RESUMEN

The application of biochar is mostly used to improve soil fertility, water retention capacity and nutrient uptake. The present study was conducted in order to study the impact of biochar at water deficiency conditions on the physiological and biochemical processes of Medicago ciliaris seedlings. Seedlings were cultivated under greenhouse conditions in pots filled with a mixture of soil and sand mixed in the presence or absence of 2% biochar. Plants of uniform size were subjected after a pretreatment phase (72 days) either to low (36% water holding capacity, water potential low) or high soil water potential (60% water holding capacity, water potential high). Pots were weighed every day to control and maintain a stable water holding capacity. In Medicago ciliaris, drought led to a significant reduction in plant growth and an increase in the root/shoot ratio. The growth response was accompanied by a decreased stomatal conductance and a reduction of the net CO2 assimilation rate and water use efficiency. The associated higher risk of ROS production was indicated by a high level of lipid peroxidation, high antioxidant activities and high proline accumulation. Soil amendment with biochar enhanced the growth significantly and supported the photosynthetic apparatus of Medicago ciliaris species by boosting chlorophyll content and Anet both under well and insufficient watered plants and water use efficiency in case of water shortage. This increase of water use efficiency was correlated with the biochar-mediated decrease of the MDA and proline contents in the leaves buffering the impact of drought on photosynthetic apparatus by increasing the activity of enzymatic antioxidants SOD, APX, GPOX and GR and non-enzymatic antioxidants, such as AsA and DHAsA, giving the overall picture of a moderate stress response. These results confirmed the hypothesis that biochar application significantly reduces both the degree of stress and the negative impact of oxidative stress on Medicago ciliaris plants. These results implied that this species could be suitable as a cash pasture plant in the development of agriculture on dry wasteland in a future world of water shortages.

3.
Plant Physiol Biochem ; 164: 222-236, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34010782

RESUMEN

Soil salinity is one of the most important environmental factors that adversely affect plant growth and productivity. Quinoa emerges as a good food candidate due to its exceptional nutritive value, and its adaptability to various abiotic stresses. This high quinoa potential was investigated in the present study by evaluating the impact of salinity and post-stress restorative processes, in order to test how a pulse of saline water affects the growth and survival of two quinoa genotypes differing in salt resistance, Kcoito (salt sensitive) and UDEC-5 (salt resistant). Plants established in non-saline nutrient solution (hydroponic system) were exposed to a pulse of 0, 100 and 300 mM NaCl salinity for three weeks followed by four weeks in nutrient solution. Both genotypes survived exposure to salinity pulses. After stress removal, only the salt resistant variety UDEC-5 presented a significant stimulation of growth above the level of the non-pulsed treatment. Furthermore, the two varieties showed different responses in physiological, biochemical and antioxidant parameters. Again, the salinity release was highly controlled in pulsed UDEC-5 and more targeted as in Kcoito. In a win-win situation, the NaCl remaining in the tissues was used from UDEC-5 to optimize water uptake (osmotic force), to release vacuolar nutrients to enhance indirectly photosynthesis and to reduce ionic burden. This straightforward adjustment was accompanied by priming-effects such as a high proline accumulation and a balanced oxidative stress defense to scavenge remaining toxic reactive oxygen species (ROS), to stabilize enzymes and to be poised and to reduce lipid peroxidation and membrane damage. It can be concluded, that both species can tolerate short periods of exposure to saline conditions and this gives some flexibility of transient or permanent irrigation with saline water. However, taken together all of these markers indicate that only UDEC-5 quinoa can utilize salinity pulses in the applied range to enhance, growth, their antioxidant defense and water relations even above the level of non-pulsed plants.


Asunto(s)
Chenopodium quinoa , Antioxidantes , Genotipo , Salinidad , Cloruro de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...