Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Asunto principal
Tipo de estudio
Intervalo de año de publicación
1.
iScience ; 26(8): 107420, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37583549

RESUMEN

Owing to their prevalence in nowadays terrestrial ecosystems, insects are a relevant group to assess the impact of mass extinctions on emerged land. However, limitations of the insect fossil record make it difficult to assess the impact of such events based on taxonomic diversity alone. Therefore, we documented trends in morphological diversity, i.e., disparity, using wings of Permian to Jurassic Odonata as model. Our results show a decreasing trend in disparity while species richness increased. Both the Permian-Triassic and Triassic-Jurassic transitions are revealed as important events, associated with strong morphospace restructuring due to selective extinction. In each case, a recovery was assured by the diversification of new forms compensating the loss of others. Early representatives of Odonata continuously evolved new shapes, a pattern contrasting with the classical assertion of a morphospace fulfilled early and followed by selective extinctions and specialization within it.

2.
iScience ; 24(11): 103324, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34805787

RESUMEN

Dragonflies and damselflies are among the earliest flying insects with extant representatives. However, unraveling details of their long evolutionary history, such as egg laying (oviposition) strategies, is impeded by unresolved phylogenetic relationships, particularly in damselflies. Here we present a transcriptome-based phylogenetic reconstruction of Odonata, analyzing 2,980 protein-coding genes in 105 species representing nearly all the order's families. All damselfly and most dragonfly families are recovered as monophyletic. Our data suggest a sister relationship between dragonfly families of Gomphidae and Petaluridae. According to our divergence time estimates, both crown-Zygoptera and -Anisoptera arose during the late Triassic. Egg-laying with a reduced ovipositor apparently evolved in dragonflies during the late Jurassic/early Cretaceous. Lastly, we also test the impact of fossil choice and placement, particularly, of the extinct fossil species, †Triassolestodes asiaticus, and †Proterogomphus renateae on divergence time estimates. We find placement of †Proterogomphus renateae to be much more impactful than †Triassolestodes asiaticus.

3.
Arthropod Struct Dev ; 63: 101056, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33984598

RESUMEN

Probably the most common rock-imprint fossil-insect remain is an incomplete isolated wing. This pitfall has been traditionally addressed by manually reconstructing missing parts, which is not ideal to comprehend long-term evolutionary trends in the group, in particular for morphological diversity (i.e., disparity) approaches. Herein we describe a new Triassic relative of dragon- and damselflies (Odonata), Moltenophlebia lindae gen. et sp. nov., from the Molteno Formation (Karoo Basin, South Africa), on the basis of three incomplete, isolated wings. In order to provide a reconstruction of the complete wing venation of the species, we formalized and applied a repeatable method aiming at inferring the missing parts of a given specimen. It is based on homologous veins automatically identified thanks to a standardized color-coding. The dedicated script can be applied broadly to the fossil record of insect wings. The species is identified as a member of the Zygophlebiida, within the Triadophlebiomorpha. This discovery, therefore, represents the first ascertained occurrence of the latter group in Gondwana, an area where the fossil record of Odonata is depauperate.


Asunto(s)
Odonata , Animales , Evolución Biológica , Fósiles , Insectos , Alas de Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...