Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(30): 7376-7384, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024061

RESUMEN

The effects of deviations from nonlinearity around the carbonyl proton acceptor of an amide group are assessed by DFT quantum chemical calculations for both CH··O and NH··O H-bonds. The proton donors are the imidazole functional group of His and the indole of Trp, which are paired respectively with N-methylacetamide and acetamide. The displacement of either CH or NH group toward the carbonyl O sp2 lone pairs stabilizes the system and strengthens the H-bond. But the two donor groups differ in their response to a shift out of the amide plane. While the NH··O H-bond is weakened by this displacement, a substantial strengthening is observed when the CH donor is moved out of this plane, in one direction versus the other. This pattern is explained on the basis of simple Coulombic considerations.


Asunto(s)
Enlace de Hidrógeno , Proteínas , Protones , Proteínas/química , Teoría Funcional de la Densidad , Acetamidas/química
2.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 551-562, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38941144

RESUMEN

Tryptophan is the most prominent amino acid found in proteins, with multiple functional roles. Its side chain is made up of the hydrophobic indole moiety, with two groups that act as donors in hydrogen bonds: the Nϵ-H group, which is a potent donor in canonical hydrogen bonds, and a polarized Cδ1-H group, which is capable of forming weaker, noncanonical hydrogen bonds. Due to adjacent electron-withdrawing moieties, C-H...O hydrogen bonds are ubiquitous in macromolecules, albeit contingent on the polarization of the donor C-H group. Consequently, Cα-H groups (adjacent to the carbonyl and amino groups of flanking peptide bonds), as well as the Cϵ1-H and Cδ2-H groups of histidines (adjacent to imidazole N atoms), are known to serve as donors in hydrogen bonds, for example stabilizing parallel and antiparallel ß-sheets. However, the nature and the functional role of interactions involving the Cδ1-H group of the indole ring of tryptophan are not well characterized. Here, data mining of high-resolution (r ≤ 1.5 Å) crystal structures from the Protein Data Bank was performed and ubiquitous close contacts between the Cδ1-H groups of tryptophan and a range of electronegative acceptors were identified, specifically main-chain carbonyl O atoms immediately upstream and downstream in the polypeptide chain. The stereochemical analysis shows that most of the interactions bear all of the hallmarks of proper hydrogen bonds. At the same time, their cohesive nature is confirmed by quantum-chemical calculations, which reveal interaction energies of 1.5-3.0 kcal mol-1, depending on the specific stereochemistry.


Asunto(s)
Enlace de Hidrógeno , Proteínas , Triptófano , Triptófano/química , Proteínas/química , Modelos Moleculares , Cristalografía por Rayos X/métodos , Conformación Proteica
3.
Front Physiol ; 14: 1228488, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781225

RESUMEN

Introduction: Phosphorylation of smooth muscle (SM) myosin regulatory light chain (RLC20) is a critical switch leading to SM contraction. The canonical view held that only the short isoform of myosin light chain kinase (MLCK1) catalyzed this reaction. It is now accepted that auxiliary kinases may contribute to vascular SM tone and contractility. We have previously reported that p90 ribosomal S6 kinase (RSK2) functions as such a kinase, in parallel with MLCK1, contributing ∼25% of the maximal myogenic force in resistance arteries. Thus, RSK2 may be instrumental in the regulation of basal vascular tone and blood pressure. Here, we take advantage of a MLCK1 null mouse (mylk1 -/-) to further test our hypothesis that RSK2 can function as an MLCK, playing a significant physiological role in SM contractility. Methods: Using fetal (E14.5-18.5) SM tissues, as embryos die at birth, we investigated the necessity of MLCK for contractility and fetal development and determined the ability of RSK2 kinase to compensate for the lack of MLCK and characterized its signaling pathway in SM. Results and Discussion: Agonists induced contraction and RLC20 phosphorylation in mylk1 -/- SM was attenuated by RSK2 inhibition. The pCa-tension relationships in permeabilized strips of bladder showed no difference in Ca2+ sensitivity in WT vs mylk1 -/- muscles, although the magnitude of force responses was considerably smaller in the absence of MLCK. The magnitude of contractile responses was similar upon addition of GTPγS to activate the RhoA/ROCK pathway or calyculinA to inhibit the myosin phosphatase. The Ca2+-dependent tyrosine kinase, Pyk2, contributed to RSK2-mediated contractility and RLC20 phosphorylation. Proximity-ligation and immunoprecipitation assays demonstrated an association of RSK2, PDK1 and ERK1/2 with MLCK and actin. RSK2, PDK1, ERK1/2 and MLCK formed a signaling complex on the actin filament, positioning them for interaction with adjacent myosin heads. The Ca2+-dependent component reflected the agonist mediated increases in Ca2+, which activated the Pyk2/PDK1/RSK2 signaling cascade. The Ca2+-independent component was through activation of Erk1/2/PDK1/RSK2 leading to direct phosphorylation of RLC20, to increase contraction. Overall, RSK2 signaling constitutes a new third signaling pathway, in addition to the established Ca2+/CaM/MLCK and RhoA/ROCK pathways to regulate SM contractility.

4.
bioRxiv ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37292593

RESUMEN

Background: Phosphorylation of smooth muscle (SM) myosin regulatory light chain (RLC 20 ) is a critical switch leading to contraction or cell migration. The canonical view held that the only kinase catalyzing this reaction is the short isoform of myosin light chain kinase (MLCK1). Auxiliary kinases may be involved and play a vital role in blood pressure homeostasis. We have previously reported that p90 ribosomal S6 kinase (RSK2) functions as such a kinase, in parallel with the classical MLCK1, contributing ∼25% of the maximal myogenic force in resistance arteries and regulating blood pressure. Here, we take advantage of a MLCK1 null mouse to further test our hypothesis that RSK2 can function as an MLCK, playing a significant physiological role in SM contractility. Methods: Fetal (E14.5-18.5) SM tissues were used as embryos die at birth. We investigated the necessity of MLCK for contractility, cell migration and fetal development and determined the ability of RSK2 kinase to compensate for the lack of MLCK and characterized it's signaling pathway in SM. Results: Agonists induced contraction and RLC 20 phosphorylation in mylk1 -/- SM, that was inhibited by RSK2 inhibitors. Embryos developed and cells migrated in the absence of MLCK. The pCa-tension relationships in WT vs mylk1 -/- muscles demonstrated a Ca 2+ -dependency due to the Ca 2+ -dependent tyrosine kinase Pyk2, known to activate PDK1 that phosphorylates and fully activates RSK2. The magnitude of contractile responses was similar upon addition of GTPγS to activate the RhoA/ROCK pathway. The Ca 2+ -independent component was through activation of Erk1/2/PDK1/RSK2 leading to direct phosphorylation of RLC 20 , to increase contraction. RSK2, PDK1, Erk1/2 and MLCK formed a signaling complex on the actin filament, optimally positioning them for interaction with adjacent myosin heads. Conclusions: RSK2 signaling constitutes a new third signaling pathway, in addition to the established Ca 2+ /CAM/MLCK and RhoA/ROCK pathways to regulate SM contractility and cell migration.

5.
Mol Biol Cell ; 34(1): br1, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36350697

RESUMEN

Dynein inactivates the spindle assembly checkpoint (SAC) by transporting checkpoint proteins away from kinetochores toward spindle poles in a process known as "stripping." We find that inhibition of Aurora A kinase, which is localized to spindle poles, enables the accumulation of the spindle checkpoint activator Mad1 at poles where it is normally absent. Aurora kinases phosphorylate the dynein activator NudE neurodevelopment protein 1 like 1 (Ndel1) on Ser285 and Mad1 accumulates at poles when Ndel1 is replaced by a nonphosphorylatable mutant in human cells. The pole focusing protein NuMA, transported to poles by dynein, also accumulates at poles in cells harboring a mutant Ndel1. Phosphorylation of Ndel1 on Ser285 is required for robust spindle checkpoint activity and regulates the poles of asters in Xenopus extracts. Our data suggest that dynein/SAC complexes that are generated at kinetochores and then transported directionally toward poles on microtubules are inhibited by Aurora A before they reach spindle poles. These data suggest that Aurora A generates a spatial signal at spindle poles that controls dynein transport and spindle function.


Asunto(s)
Dineínas , Huso Acromático , Humanos , Dineínas/metabolismo , Huso Acromático/metabolismo , Aurora Quinasa A/metabolismo , Cinetocoros/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polos del Huso/metabolismo , Microtúbulos/metabolismo , Proteínas Portadoras/metabolismo
6.
Acta Crystallogr A Found Adv ; 77(Pt 5): 362-378, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473092

RESUMEN

The bent structure of the water molecule, and its hydrogen-bonding properties, arguably rank among the most impactful discoveries in the history of chemistry. Although the fact that the H-O-H angle must deviate from linearity was inferred early in the 20th century, notably from the existence of the electric dipole moment, it was not clear what that angle should be and why. One hundred years ago, a young PhD student at the University of California, Berkeley, Eustace J. Cuy, rationalized the V-shape structure of a water molecule using the Lewis theory of a chemical bond, i.e. a shared electron pair, and its tetrahedral stereochemistry. He was inspired, in part, by the proposal of a weak (hydrogen) bond in water by two colleagues at Berkeley, Wendell Latimer and Worth Rodebush, who published their classic paper a year earlier. Cuy went on to suggest that other molecules, notably H2S and NH3, have similar structures, and presciently predicted that this architecture has broader consequences for the structure of water as a liquid. This short, but brilliant paper has been completely forgotten, perhaps due to the tragic death of the author at the age of 28; the hydrogen-bond study is also rarely recognized. One of the most impactful publications on the structure of liquid water, a classic treatise published in 1933 by John Bernal and Ralph Fowler, does not mention either of the two pioneering papers. In this essay, the background for the two discoveries is described, including the brief history of Lewis's research on the nature of the chemical bond, and the history of the discovery of the hydrogen bond, which inspired Cuy to look at the structure of the water molecule. This is - to the best of the author's knowledge - the first biographical sketch of Eustace J. Cuy.

7.
IUBMB Life ; 72(6): 1233-1242, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32271995

RESUMEN

C─H⋯O hydrogen bonds constitute a unique class of cohesive interactions. Their properties are similar to those of canonical H-bonds, although their energy is significantly lower, typically in the 0.5-2.5 kcal/mol range. Polarised C─H groups, such as those adjacent to electronegative groups, or within aromatic moieties, are particularly strong donors. C─H⋯O bonds are ubiquitous in nucleic acids and in proteins, notably stabilizing the ß-sheet secondary structure. They have also been observed in numerous protein-ligand interactions. Here, we analysed crystal structures, deposited in the Protein Data Bank, of complexes of FDA-approved protein kinase inhibitors with cognate kinases, to assess the possible role of C─Hinhibitor ⋯Oprotein hydrogen bonds. The conserved hinge motif of protein kinases with two solvent-exposed carbonyl groups and one exposed backbone amide, is well known to be involved in canonical H-bonding with inhibitors. We now find that in virtually all complexes where the inhibitor interacts with the hinge backbone, at least one of the hinge carbonyl groups accepts an H-bond from a C─H inhibitor group, which is either aromatic or adjacent to an electronegative group. These observations are important for design of hinge-binding scaffolds of novel kinase inhibitors for therapeutic use.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Estereoisomerismo
8.
Structure ; 27(12): 1855-1861.e3, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31604608

RESUMEN

Extracellular bacterial cellulose contributes to biofilm stability and to the integrity of the bacterial cell envelope. In Gram-negative bacteria, cellulose is synthesized and secreted by a multi-component cellulose synthase complex. The BcsA subunit synthesizes cellulose and also transports the polymer across the inner membrane. Translocation across the outer membrane occurs through the BcsC porin, which extends into the periplasm via 19 tetra-tricopeptide repeats (TPR). We present the crystal structure of a truncated BcsC, encompassing the last TPR repeat and the complete outer membrane channel domain, revealing a 16-stranded, ß barrel pore architecture. The pore is blocked by an extracellular gating loop, while the extended C terminus inserts deeply into the channel and positions a conserved Trp residue near its extracellular exit. The channel is lined with hydrophilic and aromatic residues suggesting a mechanism for facilitated cellulose diffusion based on aromatic stacking and hydrogen bonding.


Asunto(s)
Celulosa/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Glucosiltransferasas/química , Porinas/química , Repeticiones de Tetratricopéptidos/genética , Sitios de Unión , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Celulosa/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Periplasma/metabolismo , Periplasma/ultraestructura , Porinas/genética , Porinas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
9.
Sci Signal ; 11(554)2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30377223

RESUMEN

Smooth muscle contraction is triggered when Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates the regulatory light chain of myosin (RLC20). However, blood vessels from Mlck-deficient mouse embryos retain the ability to contract, suggesting the existence of additional regulatory mechanisms. We showed that the p90 ribosomal S6 kinase 2 (RSK2) also phosphorylated RLC20 to promote smooth muscle contractility. Active, phosphorylated RSK2 was present in mouse resistance arteries under normal basal tone, and phosphorylation of RSK2 increased with myogenic vasoconstriction or agonist stimulation. Resistance arteries from Rsk2-deficient mice were dilated and showed reduced myogenic tone and RLC20 phosphorylation. RSK2 phosphorylated Ser19 in RLC in vitro. In addition, RSK2 phosphorylated an activating site in the Na+/H+ exchanger (NHE-1), resulting in cytosolic alkalinization and an increase in intracellular Ca2+ that promotes vasoconstriction. NHE-1 activity increased upon myogenic constriction, and the increase in intracellular pH was suppressed in Rsk2-deficient mice. In pressured arteries, RSK2-dependent activation of NHE-1 was associated with increased intracellular Ca2+ transients, which would be expected to increase MLCK activity, thereby contributing to basal tone and myogenic responses. Accordingly, Rsk2-deficient mice had lower blood pressure than normal littermates. Thus, RSK2 mediates a procontractile signaling pathway that contributes to the regulation of basal vascular tone, myogenic vasoconstriction, and blood pressure and may be a potential therapeutic target in smooth muscle contractility disorders.


Asunto(s)
Arterias/patología , Músculo Liso/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Miosinas del Músculo Liso/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Actinas/metabolismo , Animales , Aorta/citología , Calcio/metabolismo , Células Cultivadas , Femenino , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Noqueados , Desarrollo de Músculos , Miocitos del Músculo Liso/citología , Miografía , Quinasa de Cadena Ligera de Miosina/metabolismo , Fenilefrina/farmacología , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Vasoconstricción
10.
Acta Crystallogr D Struct Biol ; 74(Pt 7): 681-689, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29968677

RESUMEN

The vast majority of platforms for the detection of viral or bacterial antigens rely on immunoassays, typically ELISA or sandwich ELISA, that are contingent on the availability of suitable monoclonal antibodies (mAbs). This is a major bottleneck, since the generation and production of mAbs is time-consuming and expensive. Synthetic antibody fragments (sFabs) generated by phage-display selection offer an alternative with many advantages over Fabs obtained from natural antibodies using hybridoma technology. Unlike mAbs, sFabs are generated using phage display, allowing selection for binding to specific strains or for pan-specificity, for identification of structural epitopes or unique protein conformations and even for complexes. Further, they can easily be produced in Escherichia coli in large quantities and engineered for purposes of detection technologies and other applications. Here, the use of phage-display selection to generate a pan-specific Fab (MJ20), based on a Herceptin Fab scaffold, with the ability to bind selectively and with high affinity to the C-terminal domains of the nucleoproteins (NPs) from all five known strains of the Ebola virus is reported. The high-resolution crystal structure of the complex of MJ20 with the antigen from the Bundibugyo strain of the Ebola virus reveals the basis for pan-specificity and illustrates how the phage-display technology can be used to manufacture suitable Fabs for use in diagnostic or therapeutic applications.


Asunto(s)
Complejo Antígeno-Anticuerpo/química , Ebolavirus/química , Fragmentos Fab de Inmunoglobulinas/química , Nucleoproteínas/química , Técnicas de Visualización de Superficie Celular , Cristalografía por Rayos X , Humanos , Fragmentos de Inmunoglobulinas/química , Biblioteca de Péptidos , Unión Proteica , Dominios Proteicos
11.
Acta Crystallogr D Struct Biol ; 73(Pt 9): 767-774, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28876240

RESUMEN

Two nonstructural proteins encoded by Zika virus strain MR766 RNA, a methyltransferase and a helicase, were crystallized and their structures were solved and refined at 2.10 and 2.01 Šresolution, respectively. The NS5 methyltransferase contains a bound S-adenosyl-L-methionine (SAM) co-substrate. The NS3 helicase is in the apo form. Comparison with published crystal structures of the helicase in the apo, nucleotide-bound and single-stranded RNA (ssRNA)-bound states suggests that binding of ssRNA to the helicase may occur through conformational selection rather than induced fit.


Asunto(s)
Metiltransferasas/química , ARN Helicasas/química , Proteínas no Estructurales Virales/química , Virus Zika/química , Virus Zika/enzimología , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica , S-Adenosilmetionina/química , Uganda , Infección por el Virus Zika/virología
12.
Methods Mol Biol ; 1607: 77-115, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28573570

RESUMEN

Crystallization of macromolecules has long been perceived as a stochastic process, which cannot be predicted or controlled. This is consistent with another popular notion that the interactions of molecules within the crystal, i.e., crystal contacts, are essentially random and devoid of specific physicochemical features. In contrast, functionally relevant surfaces, such as oligomerization interfaces and specific protein-protein interaction sites, are under evolutionary pressures so their amino acid composition, structure, and topology are distinct. However, current theoretical and experimental studies are significantly changing our understanding of the nature of crystallization. The increasingly popular "sticky patch" model, derived from soft matter physics, describes crystallization as a process driven by interactions between select, specific surface patches, with properties thermodynamically favorable for cohesive interactions. Independent support for this model comes from various sources including structural studies and bioinformatics. Proteins that are recalcitrant to crystallization can be modified for enhanced crystallizability through chemical or mutational modification of their surface to effectively engineer "sticky patches" which would drive crystallization. Here, we discuss the current state of knowledge of the relationship between the microscopic properties of the target macromolecule and its crystallizability, focusing on the "sticky patch" model. We discuss state-of-the-art in silico methods that evaluate the propensity of a given target protein to form crystals based on these relationships, with the objective to design variants with modified molecular surface properties and enhanced crystallization propensity. We illustrate this discussion with specific cases where these approaches allowed to generate crystals suitable for structural analysis.


Asunto(s)
Aminoácidos/química , Biología Computacional/métodos , Cristalización/métodos , Cristalografía por Rayos X/métodos , Proteínas/ultraestructura , Expresión Génica , Modelos Moleculares , Mutación , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Ingeniería de Proteínas , Proteínas/química , Proteínas/genética , Solubilidad , Propiedades de Superficie , Termodinámica
13.
PLoS One ; 11(10): e0164343, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27732676

RESUMEN

Ribosomal S6 kinases (RSK) play important roles in cell signaling through the mitogen-activated protein kinase (MAPK) pathway. Each of the four RSK isoforms (RSK1-4) is a single polypeptide chain containing two kinase domains connected by a linker sequence with regulatory phosphorylation sites. Here, we demonstrate that full-length RSK2-which is implicated in several types of cancer, and which is linked to the genetic Coffin-Lowry syndrome-can be overexpressed with high yields in Escherichia coli as a fusion with maltose binding protein (MBP), and can be purified to homogeneity after proteolytic removal of MBP by affinity and size-exclusion chromatography. The purified protein can be fully activated in vitro by phosphorylation with protein kinases ERK2 and PDK1. Compared to full-length RSK2 purified from insect host cells, the bacterially expressed and phosphorylated murine RSK2 shows the same levels of catalytic activity after phosphorylation, and sensitivity to inhibition by RSK-specific inhibitor SL0101. Interestingly, we detect low levels of phosphorylation in the nascent RSK2 on Ser386, owing to autocatalysis by the C-terminal domain, independent of ERK. This observation has implications for in vivo signaling, as it suggests that full activation of RSK2 by PDK1 alone is possible, circumventing at least in some cases the requirement for ERK.


Asunto(s)
Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Animales , Clonación Molecular , Activación Enzimática , Escherichia coli/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Mutación , Fosforilación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética
14.
Acta Crystallogr D Struct Biol ; 72(Pt 1): 49-58, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26894534

RESUMEN

The Filoviridae family of negative-sense, single-stranded RNA (ssRNA) viruses is comprised of two species of Marburgvirus (MARV and RAVV) and five species of Ebolavirus, i.e. Zaire (EBOV), Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV) and Bundibugyo (BDBV). In each of these viruses the ssRNA encodes seven distinct proteins. One of them, the nucleoprotein (NP), is the most abundant viral protein in the infected cell and within the viral nucleocapsid. It is tightly associated with the viral RNA in the nucleocapsid, and during the lifecycle of the virus is essential for transcription, RNA replication, genome packaging and nucleocapsid assembly prior to membrane encapsulation. The structure of the unique C-terminal globular domain of the NP from EBOV has recently been determined and shown to be structurally unrelated to any other known protein [Dziubanska et al. (2014), Acta Cryst. D70, 2420-2429]. In this paper, a study of the C-terminal domains from the NP from the remaining four species of Ebolavirus, as well as from the MARV strain of Marburgvirus, is reported. As expected, the crystal structures of the BDBV and TAFV proteins show high structural similarity to that from EBOV, while the MARV protein behaves like a molten globule with a core residual structure that is significantly different from that of the EBOV protein.


Asunto(s)
Ebolavirus/química , Marburgvirus/química , Nucleoproteínas/química , Proteínas Virales/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Fiebre Hemorrágica Ebola/virología , Enfermedad del Virus de Marburg/virología , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia
15.
Postepy Biochem ; 62(3): 286-297, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28132483

RESUMEN

Macromolecular X-ray crystallography has undergone a dramatic and astonishing transformation since its inception in mid 1950s, almost exclusively owing to the developments in three other fields: computer science; synchrotron radiation; and molecular biology. The process of structure solution from a single crystal, provided the quality of diffraction data is adequate, has been shortened from many years to hours, if not minutes. Yet, in spite of the exponential increase in the available structural information (~120, 000 structures in the Protein Data Bank today), many fundamental problems continue to be the subject of scientific controversy. This article contains personal recollections of the author, pertaining to two research projects - conducted nearly four decades apart - both of which touch upon such long standing discussion of the Monod-Wyman-Changeux theory of cooperativity (or 'conformational selection') vs the Koshland-Nemethy-Filmer theory of 'induced fit'. It is dedicated to Dr. Alexander Wlodawer on his 70th birthday, with best wishes of continuing success.


Asunto(s)
Cristalografía por Rayos X/métodos , Cristalografía por Rayos X/historia , Historia del Siglo XX , Historia del Siglo XXI , Conformación Proteica , Proteínas/química , Proteínas/metabolismo
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2420-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25195755

RESUMEN

Ebolavirus (EBOV) causes severe hemorrhagic fever with a mortality rate of up to 90%. EBOV is a member of the order Mononegavirales and, like other viruses in this taxonomic group, contains a negative-sense single-stranded (ss) RNA. The EBOV ssRNA encodes seven distinct proteins. One of them, the nucleoprotein (NP), is the most abundant viral protein in the infected cell and within the viral nucleocapsid. Like other EBOV proteins, NP is multifunctional. It is tightly associated with the viral genome and is essential for viral transcription, RNA replication, genome packaging and nucleocapsid assembly prior to membrane encapsulation. NP is unusual among the Mononegavirales in that it contains two distinct regions, or putative domains, the C-terminal of which shows no homology to any known proteins and is purported to be a hub for protein-protein interactions within the nucleocapsid. The atomic structure of NP remains unknown. Here, the boundaries of the N- and C-terminal domains of NP from Zaire EBOV are defined, it is shown that they can be expressed as highly stable recombinant proteins in Escherichia coli, and the atomic structure of the C-terminal domain (residues 641-739) derived from analysis of two distinct crystal forms at 1.98 and 1.75 Šresolution is described. The structure reveals a novel tertiary fold that is distantly reminiscent of the ß-grasp architecture.


Asunto(s)
Ebolavirus/química , Nucleoproteínas/química , Proteínas Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Ebolavirus/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Homología de Secuencia de Aminoácido
17.
Methods Mol Biol ; 1140: 201-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24590720

RESUMEN

The success of macromolecular crystallization depends on the protein's ability to form specific, cohesive intermolecular interactions that serve as crystal contacts. In the cases where the protein lacks surface patches conducive to such interactions, crystallization may not occur. However, it is possible to enhance the likelihood of crystallization by engineering such patches through site-directed mutagenesis, targeting specifically residues with high side chain entropy and replacing them with small amino acids (i.e., surface entropy reduction, SER). This method has proven successful in hundreds of crystallographic analyses of proteins otherwise recalcitrant to crystallization. Three representative cases of the application of the SER strategy, assisted by the automated prediction of the mutation sites using the SER prediction (SERp) server are described.


Asunto(s)
Biología Molecular/métodos , Conformación Proteica , Proteínas/química , Aminoácidos/química , Cristalización , Cristalografía por Rayos X , Entropía , Mutagénesis Sitio-Dirigida , Mutación , Proteínas/genética , Propiedades de Superficie
18.
J Biol Chem ; 288(47): 34030-34040, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24106280

RESUMEN

Many agonists, acting through G-protein-coupled receptors and Gα subunits of the heterotrimeric G-proteins, induce contraction of smooth muscle through an increase of [Ca(2+)]i as well as activation of the RhoA/RhoA-activated kinase pathway that amplifies the contractile force, a phenomenon known as Ca(2+) sensitization. Gα12/13 subunits are known to activate the regulator of G-protein signaling-like family of guanine nucleotide exchange factors (RhoGEFs), which includes PDZ-RhoGEF (PRG) and leukemia-associated RhoGEF (LARG). However, their contributions to Ca(2+)-sensitized force are not well understood. Using permeabilized blood vessels from PRG(-/-) mice and a new method to silence LARG in organ-cultured blood vessels, we show that both RhoGEFs are activated by the physiologically and pathophysiologically important thromboxane A2 and endothelin-1 receptors. The co-activation is the result of direct and independent activation of both RhoGEFs as well as their co-recruitment due to heterodimerization. The isolated recombinant C-terminal domain of PRG, which is responsible for heterodimerization with LARG, strongly inhibited Ca(2+)-sensitized force. We used photolysis of caged phenylephrine, caged guanosine 5'-O-(thiotriphosphate) (GTPγS) in solution, and caged GTPγS or caged GTP loaded on the RhoA·RhoGDI complex to show that the recruitment and activation of RhoGEFs is the cause of a significant time lag between the initial Ca(2+) transient and phasic force components and the onset of Ca(2+)-sensitized force.


Asunto(s)
Calcio/metabolismo , Factores de Intercambio de Guanina Nucleótido/agonistas , Guanosina 5'-O-(3-Tiotrifosfato)/análogos & derivados , Fenilefrina/análogos & derivados , Factores de Intercambio de Guanina Nucleótido Rho/agonistas , Animales , Línea Celular , Silenciador del Gen/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Humanos , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Fenilefrina/farmacología , Multimerización de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína , Conejos , Ratas , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Receptores de Tromboxano A2 y Prostaglandina H2/genética , Receptores de Tromboxano A2 y Prostaglandina H2/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/genética , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
19.
Biochim Biophys Acta ; 1834(7): 1285-91, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23541530

RESUMEN

All known protein kinases share a bilobal kinase domain with well conserved structural elements. Because of significant structural similarities of nucleotide binding pocket, the development of highly selective kinase inhibitors is a very challenging task. Flavonols, naturally occurring plant metabolites, have long been known to inhibit kinases by mimicking the adenine moiety. Interestingly, recent data show that some flavonol glycosides are more selective, although underlying mechanisms were unknown. Crystallographic data from our laboratory revealed that the N-terminal kinase domain of p90 ribosomal S6 kinase, isoform 2, binds three different flavonol rhamnosides in a highly unusual manner, distinct from other kinase inhibitor interactions. The kinase domain undergoes a reorganization of several structural elements in response to the binding of the inhibitors. Specifically, the main ß-sheet of the N-lobe undergoes a twisting rotation by ~56° around an axis passing through the N- and C-lobes, leading to the restructuring of the canonical ATP-binding pocket into pockets sterically adapted to the inhibitor shape. The flavonol rhamnosides appear to adopt compact, but strained conformations with the rhamnose moiety swept under the B-ring of flavonol, unlike the structure of the free counterparts in solution. These data suggest that the flavonol glycoside scaffold could be used as a template for new inhibitors selective for the RSK family. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).


Asunto(s)
Flavonoles/farmacología , Glicósidos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Animales , Cristalografía por Rayos X , Flavonoles/química , Flavonoles/metabolismo , Glicósidos/química , Glicósidos/metabolismo , Humanos , Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Ramnosa/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
20.
PLoS One ; 8(3): e58703, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516539

RESUMEN

In the canonical model of smooth muscle (SM) contraction, the contractile force is generated by phosphorylation of the myosin regulatory light chain (RLC20) by the myosin light chain kinase (MLCK). Moreover, phosphorylation of the myosin targeting subunit (MYPT1) of the RLC20 phosphatase (MLCP) by the RhoA-dependent ROCK kinase, inhibits the phosphatase activity and consequently inhibits dephosphorylation of RLC20 with concomitant increase in contractile force, at constant intracellular [Ca(2+)]. This pathway is referred to as Ca(2+)-sensitization. There is, however, emerging evidence suggesting that additional Ser/Thr kinases may contribute to the regulatory pathways in SM. Here, we report data implicating the p90 ribosomal S6 kinase (RSK) in SM contractility. During both Ca(2+)- and agonist (U46619) induced SM contraction, RSK inhibition by the highly selective compound BI-D1870 (which has no effect on MLCK or ROCK) resulted in significant suppression of contractile force. Furthermore, phosphorylation levels of RLC20 and MYPT1 were both significantly decreased. Experiments involving the irreversible MLCP inhibitor microcystin-LR, in the absence of Ca(2+), revealed that the decrease in phosphorylation levels of RLC20 upon RSK inhibition are not due solely to the increase in the phosphatase activity, but reflect direct or indirect phosphorylation of RLC20 by RSK. Finally, we show that agonist (U46619) stimulation of SM leads to activation of extracellular signal-regulated kinases ERK1/2 and PDK1, consistent with a canonical activation cascade for RSK. Thus, we demonstrate a novel and important physiological function of the p90 ribosomal S6 kinase, which to date has been typically associated with the regulation of gene expression.


Asunto(s)
Contracción Muscular , Músculo Liso/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Animales , Calcio/metabolismo , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/enzimología , Músculo Liso/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fosforilación/efectos de los fármacos , Potasio/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/metabolismo , Conejos , Ratas , Receptores de Tromboxano A2 y Prostaglandina H2/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Serina/metabolismo , Tromboxano A2/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...