Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38895455

RESUMEN

Directed evolution makes mutant lineages compete in climbing complicated sequence-function landscapes. Given this underlying complexity it is unclear how selection stringency, a ubiquitous parameter of directed evolution, impacts the outcome. Here we approach this question in terms of the fitnesses of the candidate variants at each round and the heterogeneity of their distributions of fitness effects. We show that even if the fittest mutant is most likely to yield the fittest mutants in the next round of selection, diversification can improve outcomes by sampling a larger variety of fitness effects. We find that heterogeneity in fitness effects between variants, larger population sizes, and evolution over a greater number of rounds all encourage diversification.

2.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352387

RESUMEN

In a recent preprint, Park, Metzger, and Thornton reanalyze 20 empirical protein sequence-function landscapes using a "reference-free analysis" (RFA) method they recently developed. They argue that these empirical landscapes are simpler and less epistatic than earlier work suggested, and attribute the difference to limitations of the methods used in the original analyses of these landscapes, which they claim are more sensitive to measurement noise, missing data, and other artifacts. Here, we show that these claims are incorrect. Instead, we find that the RFA method introduced by Park et al. is exactly equivalent to the reference-based least-squares methods used in the original analysis of many of these empirical landscapes (and also equivalent to a Hadamard-based approach they implement). Because the reanalyzed and original landscapes are in fact identical, the different conclusions drawn by Park et al. instead reflect different interpretations of the parameters describing the inferred landscapes; we argue that these do not support the conclusion that epistasis plays only a small role in protein sequence-function landscapes.

3.
Proc Natl Acad Sci U S A ; 121(4): e2312845121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38241432

RESUMEN

Natural selection makes evolutionary adaptation possible even if the overwhelming majority of new mutations are deleterious. However, in rapidly evolving populations where numerous linked mutations occur and segregate simultaneously, clonal interference and genetic hitchhiking can limit the efficiency of selection, allowing deleterious mutations to accumulate over time. This can in principle overwhelm the fitness increases provided by beneficial mutations, leading to an overall fitness decline. Here, we analyze the conditions under which evolution will tend to drive populations to higher versus lower fitness. Our analysis focuses on quantifying the boundary between these two regimes, as a function of parameters such as population size, mutation rates, and selection pressures. This boundary represents a state in which adaptation is precisely balanced by Muller's ratchet, and we show that it can be characterized by rapid molecular evolution without any net fitness change. Finally, we consider the implications of global fitness-mediated epistasis and find that under some circumstances, this can drive populations toward the boundary state, which can thus represent a long-term evolutionary attractor.


Asunto(s)
Tasa de Mutación , Selección Genética , Mutación , Evolución Molecular , Densidad de Población , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...