RESUMEN
Objective: To describe the infrastructure, tools, and services developed at Stanford Medicine to maintain its data science ecosystem and research patient data repository for clinical and translational research. Materials and Methods: The data science ecosystem, dubbed the Stanford Data Science Resources (SDSR), includes infrastructure and tools to create, search, retrieve, and analyze patient data, as well as services for data deidentification, linkage, and processing to extract high-value information from healthcare IT systems. Data are made available via self-service and concierge access, on HIPAA compliant secure computing infrastructure supported by in-depth user training. Results: The Stanford Medicine Research Data Repository (STARR) functions as the SDSR data integration point, and includes electronic medical records, clinical images, text, bedside monitoring data and HL7 messages. SDSR tools include tools for electronic phenotyping, cohort building, and a search engine for patient timelines. The SDSR supports patient data collection, reproducible research, and teaching using healthcare data, and facilitates industry collaborations and large-scale observational studies. Discussion: Research patient data repositories and their underlying data science infrastructure are essential to realizing a learning health system and advancing the mission of academic medical centers. Challenges to maintaining the SDSR include ensuring sufficient financial support while providing researchers and clinicians with maximal access to data and digital infrastructure, balancing tool development with user training, and supporting the diverse needs of users. Conclusion: Our experience maintaining the SDSR offers a case study for academic medical centers developing data science and research informatics infrastructure.
RESUMEN
OBJECTIVE: Observational studies can impact patient care but must be robust and reproducible. Nonreproducibility is primarily caused by unclear reporting of design choices and analytic procedures. This study aimed to: (1) assess how the study logic described in an observational study could be interpreted by independent researchers and (2) quantify the impact of interpretations' variability on patient characteristics. MATERIALS AND METHODS: Nine teams of highly qualified researchers reproduced a cohort from a study by Albogami et al. The teams were provided the clinical codes and access to the tools to create cohort definitions such that the only variable part was their logic choices. We executed teams' cohort definitions against the database and compared the number of subjects, patient overlap, and patient characteristics. RESULTS: On average, the teams' interpretations fully aligned with the master implementation in 4 out of 10 inclusion criteria with at least 4 deviations per team. Cohorts' size varied from one-third of the master cohort size to 10 times the cohort size (2159-63 619 subjects compared to 6196 subjects). Median agreement was 9.4% (interquartile range 15.3-16.2%). The teams' cohorts significantly differed from the master implementation by at least 2 baseline characteristics, and most of the teams differed by at least 5. CONCLUSIONS: Independent research teams attempting to reproduce the study based on its free-text description alone produce different implementations that vary in the population size and composition. Sharing analytical code supported by a common data model and open-source tools allows reproducing a study unambiguously thereby preserving initial design choices.