Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Toxicol Sci ; 195(2): 169-183, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37505509

RESUMEN

Valproic acid (VPA) has long been the most widely used antiepileptic drug (AED) for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. However, long-term VPA treatment has several adverse effects on the male reproductive system notably on endocrine functions and/or spermatic parameters. In utero exposure of the fetus to VPA is well known to be associated with a higher risk of several congenital malformations including those of male reproductive organs. Subsequent generations of AEDs, such as carbamazepine (CARB) and lamotrigine (LAM), are considered safer and are currently recommended for women of child-bearing age with epilepsy. Because anomalies of the male genital tract mostly result from endocrine imbalance during fetal life, we hypothesized that AEDs could directly impair testis differentiation. We thus aimed at identifying and characterizing the effects of VPA, CARB, and LAM on the differentiation and function of the different testicular cell types, and at understanding the mechanisms underlying these effects. By using ex vivo culture of first-trimester human fetal testes, we show that VPA induces multiple endocrine disruptive effects, compared with the milder ones caused by CARB and LAM. AED also subtly altered the germ cell lineage in distinct manners. Transcriptomic analysis of VPA-induced alterations highlighted a very broad range of effects on the fetal testis. Overall, our results show that AEDs can behave as endocrine disruptors for the human fetal testis ex vivo. This is consistent with, and likely underlies, the VPA-induced male genital tract masculinization abnormalities observed in patients.


Asunto(s)
Disruptores Endocrinos , Epilepsia , Humanos , Masculino , Femenino , Anticonvulsivantes/toxicidad , Anticonvulsivantes/uso terapéutico , Testículo , Disruptores Endocrinos/metabolismo , Ácido Valproico/toxicidad , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Feto
2.
J Clin Endocrinol Metab ; 107(6): 1647-1661, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35147701

RESUMEN

CONTEXT: Acetaminophen (APAP, paracetamol) is widely used by pregnant women. Although long considered safe, growing evidence indicates that APAP is an endocrine disruptor since in utero exposure may be associated with a higher risk of male genital tract abnormalities. In rodents, fetal exposure has long-term effects on the reproductive function of female offspring. Human studies have also suggested harmful APAP exposure effects. OBJECTIVE: Given that disruption of fetal ovarian development may impact women's reproductive health, we investigated the effects of APAP on fetal human ovaries in culture. DESIGN AND SETTING: Human ovarian fragments from 284 fetuses aged 7 to 12 developmental weeks (DW) were cultivated ex vivo for 7 days in the presence of human-relevant concentrations of APAP (10-8 to 10-3 M) or vehicle control. MAIN OUTCOME MEASURES: Outcomes included examination of postculture tissue morphology, cell viability, apoptosis, and quantification of hormones, APAP, and APAP metabolites in conditioned culture media. RESULTS: APAP reduced the total cell number specifically in 10- to 12-DW ovaries, induced cell death, and decreased KI67-positive cell density independently of fetal age. APAP targeted subpopulations of germ cells and disrupted human fetal ovarian steroidogenesis, without affecting prostaglandin or inhibin B production. Human fetal ovaries were able to metabolize APAP. CONCLUSIONS: Our data indicate that APAP can impact first trimester human fetal ovarian development, especially during a 10- to 12-DW window of heightened sensitivity. Overall, APAP behaves as an endocrine disruptor in the fetal human ovary.


Asunto(s)
Disruptores Endocrinos , Ovario , Acetaminofén/toxicidad , Femenino , Feto , Humanos , Masculino , Embarazo , Primer Trimestre del Embarazo
3.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206462

RESUMEN

Human fetal gonads acquire endocrine steroidogenic capabilities early during their differentiation. Genetic studies show that this endocrine function plays a central role in the sexually dimorphic development of the external genitalia during fetal development. When this endocrine function is dysregulated, congenital malformations and pathologies are the result. In this review, we explain how the current knowledge of steroidogenesis in human fetal gonads has benefited from both the technological advances in steroid measurements and the assembly of detailed knowledge of steroidogenesis machinery and its expression in human fetal gonads. We summarise how the conversion of radiolabelled steroid precursors, antibody-based assays, mass spectrometry, ultrastructural studies, and the in situ labelling of proteins and mRNA have all provided complementary information. In this review, our discussion goes beyond the debate on recommendations concerning the best choice between the different available technologies, and their degrees of reproducibility and sensitivity. The available technologies and techniques can be used for different purposes and, as long as all quality controls are rigorously employed, the question is how to maximise the generation of robust, reproducible data on steroid hormones and their crucial roles in human fetal development and subsequent functions.


Asunto(s)
Feto/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Gónadas/metabolismo , Investigación , Femenino , Humanos , Inmunoensayo , Masculino , Espectrometría de Masas , Ovario/metabolismo , Ovario/ultraestructura , Investigación/tendencias , Desarrollo Sexual/genética , Testículo/metabolismo , Testículo/ultraestructura
4.
FASEB J ; 35(7): e21718, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34105801

RESUMEN

Acetaminophen, aspirin, and ibuprofen are mild analgesics commonly used by pregnant women, the sole current recommendation being to avoid ibuprofen from the fifth month of gestation. The nephrotoxicity of these three analgesics is well documented in adults, as is their interference with prostaglandins biosynthesis. Here we investigated the effect of these analgesics on human first trimester kidneys ex vivo. We first evaluated prostaglandins biosynthesis functionality by performing a wide screening of prostaglandin expression patterns in first trimester human kidneys. We demonstrated that prostaglandins biosynthesis machinery is functional during early nephrogenesis. Human fetal kidney explants aged 7-12 developmental weeks were exposed ex vivo to ibuprofen, aspirin or acetaminophen for 7 days, and analyzed by histology, immunohistochemistry, and flow cytometry. This study has revealed that these analgesics induced a spectrum of abnormalities within early developing structures, ranging from cell death to a decline in differentiating glomeruli density. These results warrant caution for the use of these medicines during the first trimester of pregnancy.


Asunto(s)
Analgésicos/efectos adversos , Feto/efectos de los fármacos , Glomérulos Renales/efectos de los fármacos , Organogénesis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Femenino , Feto/metabolismo , Humanos , Glomérulos Renales/metabolismo , Embarazo , Primer Trimestre del Embarazo/efectos de los fármacos , Prostaglandinas/metabolismo
5.
Toxicol Sci ; 168(2): 315-338, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30535037

RESUMEN

The GMO90+ project was designed to identify biomarkers of exposure or health effects in Wistar Han RCC rats exposed in their diet to 2 genetically modified plants (GMP) and assess additional information with the use of metabolomic and transcriptomic techniques. Rats were fed for 6-months with 8 maize-based diets at 33% that comprised either MON810 (11% and 33%) or NK603 grains (11% and 33% with or without glyphosate treatment) or their corresponding near-isogenic controls. Extensive chemical and targeted analyses undertaken to assess each diet demonstrated that they could be used for the feeding trial. Rats were necropsied after 3 and 6 months. Based on the Organization for Economic Cooperation and Development test guideline 408, the parameters tested showed a limited number of significant differences in pairwise comparisons, very few concerning GMP versus non-GMP. In such cases, no biological relevance could be established owing to the absence of difference in biologically linked variables, dose-response effects, or clinical disorders. No alteration of the reproduction function and kidney physiology was found. Metabolomics analyses on fluids (blood, urine) were performed after 3, 4.5, and 6 months. Transcriptomics analyses on organs (liver, kidney) were performed after 3 and 6 months. Again, among the significant differences in pairwise comparisons, no GMP effect was observed in contrast to that of maize variety and culture site. Indeed, based on transcriptomic and metabolomic data, we could differentiate MON- to NK-based diets. In conclusion, using this experimental design, no biomarkers of adverse health effect could be attributed to the consumption of GMP diets in comparison with the consumption of their near-isogenic non-GMP controls.


Asunto(s)
Alimentación Animal/toxicidad , Grano Comestible/química , Alimentos Modificados Genéticamente/toxicidad , Plantas Modificadas Genéticamente/química , Zea mays/genética , Alimentación Animal/normas , Animales , Seguridad de Productos para el Consumidor , Grano Comestible/genética , Femenino , Alimentos Modificados Genéticamente/normas , Masculino , Plantas Modificadas Genéticamente/genética , Ratas , Ratas Wistar , Pruebas de Toxicidad/métodos , Zea mays/química
6.
Stem Cell Reports ; 11(4): 944-958, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30245210

RESUMEN

Several studies have reported an association between the farnesoid X receptor alpha (FXRα) and estrogenic signaling pathways. Fxrα could thus be involved in the reprotoxic effects of endocrine disruptors such as bisphenol-A (BPA). To test this hypothesis, mice were exposed to BPA and/or stigmasterol (S), an FXRα antagonist. Following the exposure to both molecules, wild-type animals showed impaired fertility and lower sperm cell production associated with the alteration of the establishment and maintenance of the undifferentiated germ cell pool. The crosstalk between BPA and FXRα is further supported by the lower impact of BPA in mice genetically ablated for Fxrα and the fact that BPA counteracted the effects of FXRα agonists. These effects might result from the downregulation of Fxrα expression following BPA exposure. BPA and S act additively in human testis. Our data demonstrate that FXRα activity modulates the impact of BPA on male gonads and on undifferentiated germ cell population.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Diferenciación Celular , Células Germinativas/patología , Homeostasis , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Fenoles/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Adulto , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Feto/efectos de los fármacos , Feto/patología , Células Germinativas/efectos de los fármacos , Células Germinativas/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Transducción de Señal/efectos de los fármacos , Estigmasterol/toxicidad
7.
Proc Natl Acad Sci U S A ; 115(4): E715-E724, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311296

RESUMEN

Concern has been raised over increased male reproductive disorders in the Western world, and the disruption of male endocrinology has been suggested to play a central role. Several studies have shown that mild analgesics exposure during fetal life is associated with antiandrogenic effects and congenital malformations, but the effects on the adult man remain largely unknown. Through a clinical trial with young men exposed to ibuprofen, we show that the analgesic resulted in the clinical condition named "compensated hypogonadism," a condition prevalent among elderly men and associated with reproductive and physical disorders. In the men, luteinizing hormone (LH) and ibuprofen plasma levels were positively correlated, and the testosterone/LH ratio decreased. Using adult testis explants exposed or not exposed to ibuprofen, we demonstrate that the endocrine capabilities from testicular Leydig and Sertoli cells, including testosterone production, were suppressed through transcriptional repression. This effect was also observed in a human steroidogenic cell line. Our data demonstrate that ibuprofen alters the endocrine system via selective transcriptional repression in the human testes, thereby inducing compensated hypogonadism.


Asunto(s)
Analgésicos no Narcóticos/efectos adversos , Hipogonadismo/inducido químicamente , Ibuprofeno/efectos adversos , Hormona Luteinizante/sangre , Testosterona/sangre , Adulto , Analgésicos no Narcóticos/sangre , Línea Celular , Expresión Génica/efectos de los fármacos , Humanos , Hipogonadismo/sangre , Ibuprofeno/sangre , Técnicas In Vitro , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Masculino , Persona de Mediana Edad , Prostaglandinas/biosíntesis , Células de Sertoli/efectos de los fármacos
8.
Sci Rep ; 7: 44184, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28281692

RESUMEN

Among pregnant women ibuprofen is one of the most frequently used pharmaceutical compounds with up to 28% reporting use. Regardless of this, it remains unknown whether ibuprofen could act as an endocrine disruptor as reported for fellow analgesics paracetamol and aspirin. To investigate this, we exposed human fetal testes (7-17 gestational weeks (GW)) to ibuprofen using ex vivo culture and xenograft systems. Ibuprofen suppressed testosterone and Leydig cell hormone INSL3 during culture of 8-9 GW fetal testes with concomitant reduction in expression of the steroidogenic enzymes CYP11A1, CYP17A1 and HSD17B3, and of INSL3. Testosterone was not suppressed in testes from fetuses younger than 8 GW, older than 10-12 GW, or in second trimester xenografted testes (14-17 GW). Ex vivo, ibuprofen also affected Sertoli cell by suppressing AMH production and mRNA expression of AMH, SOX9, DHH, and COL2A1. While PGE2 production was suppressed by ibuprofen, PGD2 production was not. Germ cell transcripts POU5F1, TFAP2C, LIN28A, ALPP and KIT were also reduced by ibuprofen. We conclude that, at concentrations relevant to human exposure and within a particular narrow 'early window' of sensitivity within first trimester, ibuprofen causes direct endocrine disturbances in the human fetal testis and alteration of the germ cell biology.


Asunto(s)
Feto/embriología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ibuprofeno/efectos adversos , Organogénesis/efectos de los fármacos , Testículo/embriología , Femenino , Feto/patología , Humanos , Ibuprofeno/administración & dosificación , Masculino , Embarazo , Testículo/patología , Testosterona/metabolismo
9.
PLoS One ; 10(2): e0117226, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25706302

RESUMEN

Few studies have been undertaken to assess the possible effects of bisphenol A (BPA) on the reproductive hormone balance in animals or humans with often contradictory results. We investigated possible direct endocrine disruption by BPA of the fetal testes of 2 rat strains (14.5-17.5 days post-coitum) and humans (8-12 gestational weeks) and under different culture conditions. BPA concentrations of 10(-8)M and 10(-5)M for 72 h reduced testosterone production by the Sprague-Dawley fetal rat testes, while only 10-5M suppressed it in the Wistar strain. The suppressive effects at 10-5M were seen as early as 24h and 48 h in both strains. BPA at 10(-7)-10(-5)M for 72 h suppressed the levels of fetal rat Leydig cell insulin-like factor 3 (INSL3). BPA exposure at 10(-8)M, 10(-7)M, and 10(-5)M for 72 h inhibited testosterone production in fetal human testes. For the lowest doses, the effects observed occurred only when no gonadotrophin was added to the culture media and were associated with a poorly preserved testicular morphology. We concluded that (i) BPA can display anti-androgenic effects both in rat and human fetal testes; (ii) it is essential to ascertain that the divergent effects of endocrine disruptors between species in vitro do not result from the culture conditions used, and/or the rodent strain selected; (iii) the optimization of each in vitro assay for a given species should be a major objective rather than the search of an hypothetical trans-species consensual model-system, as the organization of the testis is intrinsically different between mammalian species; (iv) due to the uncertainty existing on the internal exposure of the human fetal testis to BPA, and the insufficient number of epidemiological studies on the endocrine disruptive effects of BPA, caution should be taken in the extrapolation of our present results to the human reproductive health after fetal exposure to BPA.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Testículo/efectos de los fármacos , Animales , Femenino , Humanos , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Testículo/embriología
10.
PLoS Genet ; 10(5): e1004340, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24784881

RESUMEN

The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation occurred in the conserved membrane bound O-acyltransferase (MBOAT) domain and experimentally disrupted the ability of HHAT to palmitoylate Hh proteins such as DHH and SHH. Consistent with the patient phenotype, HHAT was found to be expressed in the somatic cells of both XX and XY gonads at the time of sex determination, and Hhat loss of function in mice recapitulates most of the testicular, skeletal, neuronal and growth defects observed in humans. In the developing testis, HHAT is not required for Sertoli cell commitment but plays a role in proper testis cord formation and the differentiation of fetal Leydig cells. Altogether, these results shed new light on the mechanisms of action of Hh proteins. Furthermore, they provide the first clinical evidence of the essential role played by lipid modification of Hh proteins in human testicular organogenesis and embryonic development.


Asunto(s)
Aciltransferasas/genética , Trastorno del Desarrollo Sexual 46,XY/genética , Proteínas Hedgehog/metabolismo , Lipoilación/genética , Mutación Missense , Transducción de Señal/genética , Aciltransferasas/química , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Homocigoto , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Linaje , Homología de Secuencia de Aminoácido , Testículo/embriología
11.
J Clin Endocrinol Metab ; 98(11): E1757-67, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24030937

RESUMEN

CONTEXT: Masculinization depends on the fetal testis. Exposure of the human fetus during pregnancy to paracetamol and/or to other mild analgesics is associated with an increased risk of cryptorchidism. OBJECTIVE: We aimed to determine whether mild analgesics disrupted the morphology and endocrine function of the human testis. DESIGN: We used an in vitro system based on the culture of human fetal testes exposed or not to paracetamol, its metabolite N-(4-hydroxyphenyl)-arachidonoylethanolamide (AM404), aspirin, indomethacin, and ketoconazole at 10(-4) to 10(-7) M. SETTING: The study was conducted at the University of Rennes I. PATIENTS/PARTICIPANTS: Human fetal testes were from pregnant women after induced abortion, between 7 and 12 weeks of gestation (GW). MAIN OUTCOME MEASURES: Testosterone (RIA), anti-Müllerian hormone (ELISA), insulin-like factor 3 (RIA), and prostaglandin (PG) D2 and PGE2 (ELISA) were assayed in the medium. Testicular cells were counted using histology and image analysis. The possible nuclear receptor-mediated activities of the analgesics were investigated using reporter cell lines expressing estrogen, androgen, and peroxisome proliferator-activated γ receptors. RESULTS: Indomethacin and aspirin stimulated testosterone production, particularly by the younger testes (8-9 GW vs 10-12 GW). Paracetamol, AM404, and ketoconazole decreased insulin-like factor 3 levels. Aspirin stimulated whereas ketoconazole inhibited AMH production. PGE2 levels were inhibited by paracetamol and aspirin in the 7 to 12 GW testes and by indomethacin but only in 7 to 9.86 GW testes. The inhibitory trends seen for PGD2 were not statistically significant. CONCLUSIONS: Analgesics at concentrations relevant to human exposure cause endocrine disturbances in the fetal testis. We suggest that the fetal human testis displays slight critical age windows for sensitivity to direct exposure to aspirin, indomethacin, and paracetamol. The analgesic-induced inhibition of INSL3 may be the mechanism by which analgesics increase the risk of cryptorchidism. Greater caution is required concerning consumption of analgesics during pregnancy.


Asunto(s)
Anomalías Inducidas por Medicamentos/etiología , Acetaminofén/efectos adversos , Aspirina/efectos adversos , Criptorquidismo/inducido químicamente , Feto/efectos de los fármacos , Indometacina/efectos adversos , Aborto Inducido , Analgésicos no Narcóticos/efectos adversos , Andrógenos/metabolismo , Antiinflamatorios no Esteroideos/efectos adversos , Criptorquidismo/patología , Femenino , Feto/patología , Humanos , Masculino , Técnicas de Cultivo de Órganos , Embarazo , Primer Trimestre del Embarazo , Testículo/anomalías , Testículo/metabolismo , Testosterona/metabolismo
12.
Hum Reprod ; 26(1): 235-44, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21059752

RESUMEN

BACKGROUND: More than half of pregnant women in the Western world report intake of mild analgesics, and some of these drugs have been associated with anti-androgenic effects in animal experiments. Intrauterine exposure to anti-androgens is suspected to contribute to the recent increase in male reproductive problems, and many of the anti-androgenic compounds are like the mild analgesics potent inhibitors of prostaglandin synthesis. Therefore, it appears imperative to further investigate the potential endocrine disrupting properties of mild analgesics. METHODS: In a prospective birth cohort study, 2297 Danish and Finnish pregnant women completed a questionnaire and 491 of the Danish mothers participated in a telephone interview, reporting on their use of mild analgesics during pregnancy. The testicular position of newborns was assessed by trained paediatricians. In rats, the impact of mild analgesics on anogenital distance (AGD) after intrauterine exposure was examined together with the effect on ex vivo gestational day 14.5 testes. RESULTS: In the Danish birth cohort, the use of mild analgesics was dose-dependently associated with congenital cryptorchidism. In particular, use during the second trimester increased the risk. This risk was further increased after the simultaneous use of different analgesics. The association was not found in the Finnish birth cohort. Intrauterine exposure of rats to paracetamol led to a reduction in the AGD and mild analgesics accordingly reduced testosterone production in ex vivo fetal rat testes. CONCLUSION: There was an association between the timing and the duration of mild analgesic use during pregnancy and the risk of cryptorchidism. These findings were supported by anti-androgenic effects in rat models leading to impaired masculinization. Our results suggest that intrauterine exposure to mild analgesics is a risk factor for development of male reproductive disorders.


Asunto(s)
Analgésicos/efectos adversos , Criptorquidismo/inducido químicamente , Infertilidad Masculina/inducido químicamente , Efectos Tardíos de la Exposición Prenatal , Acetaminofén/efectos adversos , Acetaminofén/toxicidad , Analgésicos/toxicidad , Animales , Aspirina/efectos adversos , Aspirina/toxicidad , Estudios de Cohortes , Femenino , Humanos , Ibuprofeno/efectos adversos , Ibuprofeno/toxicidad , Masculino , Embarazo , Ratas , Factores de Riesgo
13.
Environ Health Perspect ; 119(4): 534-41, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21081300

RESUMEN

BACKGROUND: Prostaglandins (PGs) play key roles in development and maintenance of homeostasis of the adult body. Despite these important roles, it remains unclear whether the PG pathway is a target for endocrine disruption. However, several known endocrine-disrupting compounds (EDCs) share a high degree of structural similarity with mild analgesics. OBJECTIVES AND METHODS: Using cell-based transfection and transduction experiments, mass spectrometry, and organotypic assays together with molecular modeling, we investigated whether inhibition of the PG pathway by known EDCs could be a novel point of endocrine disruption. RESULTS: We found that many known EDCs inhibit the PG pathway in a mouse Sertoli cell line and in human primary mast cells. The EDCs also reduced PG synthesis in ex vivo rat testis, and this reduction was correlated with a reduced testosterone production. The inhibition of PG synthesis occurred without involvement of canonical PG receptors or the peroxisome proliferator-activated receptors (PPARs), which have previously been described as targets of EDCs. Instead, our results suggest that the compounds may bind directly into the active site of the cyclooxygenase (COX) enzymes, thereby obstructing the conversion of arachidonic acid to PG precursors without interfering with the expression of the COX enzymes. A common feature of the PG inhibitory EDCs is the presence of aromatic groups that may stabilize binding in the hydrophobic active site of the COX enzymes. CONCLUSION: Our findings suggest a hitherto unknown mode of action by EDCs through inhibition of the PG pathway and suggest new avenues to investigate effects of EDCs on reproductive and immunological disorders that have become increasingly common in recent decades.


Asunto(s)
Disruptores Endocrinos/toxicidad , Prostaglandinas/metabolismo , Testículo/efectos de los fármacos , Animales , Ciclooxigenasa 2/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores de la Síntesis de Ácidos Grasos/toxicidad , Humanos , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Ratones , Ratas , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA