Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
2.
JHEP Rep ; 6(2): 100878, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38298740

RESUMEN

Background & Aims: O-GlcNAcylation is a reversible post-translational modification controlled by the activity of two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). In the liver, O-GlcNAcylation has emerged as an important regulatory mechanism underlying normal liver physiology and metabolic disease. Methods: To address whether OGT acts as a critical hepatic nutritional node, mice with a constitutive hepatocyte-specific deletion of OGT (OGTLKO) were generated and challenged with different carbohydrate- and lipid-containing diets. Results: Analyses of 4-week-old OGTLKO mice revealed significant oxidative and endoplasmic reticulum stress, and DNA damage, together with inflammation and fibrosis, in the liver. Susceptibility to oxidative and endoplasmic reticulum stress-induced apoptosis was also elevated in OGTLKO hepatocytes. Although OGT expression was partially recovered in the liver of 8-week-old OGTLKO mice, hepatic injury and fibrosis were not rescued but rather worsened with time. Interestingly, weaning of OGTLKO mice on a ketogenic diet (low carbohydrate, high fat) fully prevented the hepatic alterations induced by OGT deletion, indicating that reduced carbohydrate intake protects an OGT-deficient liver. Conclusions: These findings pinpoint OGT as a key mediator of hepatocyte homeostasis and survival upon carbohydrate intake and validate OGTLKO mice as a valuable model for assessing therapeutical approaches of advanced liver fibrosis. Impact and Implications: Our study shows that hepatocyte-specific deletion of O-GlcNAc transferase (OGT) leads to severe liver injury, reinforcing the importance of O-GlcNAcylation and OGT for hepatocyte homeostasis and survival. Our study also validates the Ogt liver-deficient mouse as a valuable model for the study of advanced liver fibrosis. Importantly, as the severe hepatic fibrosis of Ogt liver-deficient mice could be fully prevented upon feeding on a ketogenic diet (i.e. very-low-carbohydrate, high-fat diet) this work underlines the potential interest of nutritional intervention as antifibrogenic strategies.

3.
Methods Mol Biol ; 2769: 27-55, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315387

RESUMEN

The hepatotoxic N-nitroso compound diethylnitrosamine (DEN) administered intraperitoneally (i.p.) induces liver neoplasms in rodents that reproducibly recapitulate some aspects of human hepatocarcinogenesis. In particular, DEN drives the stepwise formation of pre-neoplastic and neoplastic (benign or malignant) hepatocellular lesions reminiscent of the initiation-promotion-progression sequence typical of chemical carcinogenesis. In humans, the development of hepatocellular carcinoma (HCC) is also a multi-step process triggered by continuous hepatocellular injury, chronic inflammation, and compensatory hyperplasia that fuel the emergence of dysplastic liver lesions followed by the formation of early HCC. The DEN-induced liver tumorigenesis model represents a versatile preclinical tool that enables the study of many tumor development modifiers (genetic background, gene knockout or overexpression, diets, pollutants, or drugs) with a thorough follow-up of the multistage process on live animals by means of high-resolution imaging. Here, we provide a comprehensive protocol for the induction of hepatocellular neoplasms in wild-type C57BL/6J male mice following i.p. DEN injection (25 mg/kg) at 14 days of age and 36 weeks feeding of a high-fat high-sucrose (HFHS) diet. We emphasize the use of ultrasound liver imaging to follow tumor development and provide histopathological correlations. We also discuss the extrinsic and intrinsic factors known to modify the course of liver tumorigenesis in this model.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Ratones , Animales , Lactante , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/diagnóstico por imagen , Dietilnitrosamina/toxicidad , Ratones Endogámicos C57BL , Carcinogénesis/patología , Dieta Alta en Grasa/efectos adversos , Hígado/diagnóstico por imagen , Hígado/patología , Ultrasonografía
4.
Cell Death Dis ; 15(1): 46, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218945

RESUMEN

Entosis is a process that leads to the formation of cell-in-cell structures commonly found in cancers. Here, we identified entosis in hepatocellular carcinoma and the loss of Rnd3 (also known as RhoE) as an efficient inducer of this mechanism. We characterized the different stages and the molecular regulators of entosis induced after Rnd3 silencing. We demonstrated that this process depends on the RhoA/ROCK pathway, but not on E-cadherin. The proteomic profiling of entotic cells allowed us to identify LAMP1 as a protein upregulated by Rnd3 silencing and implicated not only in the degradation final stage of entosis, but also in the full mechanism. Moreover, we found a positive correlation between the presence of entotic cells and the metastatic potential of tumors in human patient samples. Altogether, these data suggest the involvement of entosis in liver tumor progression and highlight a new perspective for entosis analysis in medicine research as a novel therapeutic target.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Entosis , Proteómica , Factores de Transcripción , Proteínas de Unión al GTP rho , Proteína 1 de la Membrana Asociada a los Lisosomas
5.
JHEP Rep ; 5(10): 100838, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37663116

RESUMEN

Background & Aims: Mcl-1, an antiapoptotic protein overexpressed in many tumours, including hepatocellular carcinoma (HCC), represents a promising target for cancer treatment. Although Mcl-1 non-apoptotic roles might critically influence the therapeutic potential of Mcl-1 inhibitors, these functions remain poorly understood. We aimed to investigate the effects of hepatic Mcl-1 deficiency (Mcl-1Δhep) on hepatocyte ploidy and cell cycle in murine liver in vivo and the possible implications on HCC. Methods: Livers of young Mcl-1Δhep and wild-type (WT) mice were analysed for ploidy profile, mitotic figures, in situ chromosome segregation, gene set enrichment analysis and were subjected to two-thirds partial hepatectomy to assess Mcl-1 deficiency effect on cell cycle progression in vivo. Mcl-1Δhep tumours in older mice were analysed for ploidy profile, chromosomal instability, and mutational signatures via whole exome sequencing. Results: In young mice, Mcl-1 deficiency leads to nuclear polyploidy and to high rates of mitotic errors with abnormal spindle figures and chromosome mis-segregation along with a prolonged spindle assembly checkpoint activation signature. Chromosomal instability and altered ploidy profile are observed in Mcl-1Δhep tumours of old mice as well as a characteristic mutational signature of currently unknown aetiology. Conclusions: Our study suggests novel non-apoptotic effects of Mcl-1 deficiency on nuclear ploidy, mitotic regulation, and chromosomal segregation in hepatocytes in vivo. In addition, the Mcl-1 deficiency characteristic mutational signature might reflect mitotic issues. These results are of importance to consider when developing anti-Mcl-1 therapies to treat cancer. Impact and implications: Although Mcl-1 inhibitors represent promising hepatocellular carcinoma treatment, the still poorly understood non-apoptotic roles of Mcl-1 might compromise their successful clinical application. Our study shows that Mcl-1 deficiency leads to nuclear polyploidy, mitotic errors, and aberrant chromosomal segregation in hepatocytes in vivo, whereas hepatocellular tumours spontaneously induced by Mcl-1 deficiency exhibit chromosomal instability and a mutational signature potentially reflecting mitotic issues. These results have potential implications for the development of anti-Mcl-1 therapies to treat hepatocellular carcinoma, especially as hyperproliferative liver is a clinically relevant situation.

6.
Clin Res Hepatol Gastroenterol ; 47(8): 102199, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37666414

RESUMEN

BACKGROUND: Long-term albumin infusions have been associated with improved outcomes in decompensated cirrhotic patients. This study aimed to evaluate the impact of albumin infusion on the prognosis of Child-Pugh B patients undergoing treatment with AtezoBev for advanced hepatocellular carcinoma (HCC). METHODS: We conducted a retrospective multicentric study that included all Child-Pugh B cirrhotic patients treated with AtezoBev since 2020. We examined the effects of albumin infusion (40 g every 3 weeks) on overall survival (OS) and the occurrence of cirrhosis-related complications. Time-to-event data were analyzed using Kaplan-Meier with the log-rank test and Cox models. RESULTS: Forty-seven HCC patients with a Child-Pugh B score who received AtezoBev were included, of whom 26% also received albumin infusions every 3 weeks. The two groups were similar in terms of liver function and HCC parameters. The median OS was 4.4 and 5.8 months (p = 0.42) for patients who did or did not receive albumin, respectively. The occurrence of hepatic encephalopathy and variceal bleeding was similar between the two groups. However, albumin infusions were associated with a significantly lower rate of ascites expansion/development (13% versus 57%, p = 0.005). Cox analysis revealed that a history of ascites (HR=3.82 [95% CI: 1.73-8.48]) was independently associated with a higher risk of ascites expansion/development, whereas albumin infusions were protective (HR=0.07 [95% CI: 0.01-0.54]). CONCLUSIONS: Albumin infusion did not improve overall survival in Child-Pugh B HCC patients treated with AtezoBev, but it significantly reduced the expansion/development of ascites.


Asunto(s)
Carcinoma Hepatocelular , Várices Esofágicas y Gástricas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/tratamiento farmacológico , Bevacizumab , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/tratamiento farmacológico , Estudios Retrospectivos , Várices Esofágicas y Gástricas/complicaciones , Ascitis/complicaciones , Hemorragia Gastrointestinal/etiología , Hemorragia Gastrointestinal/prevención & control , Cirrosis Hepática/complicaciones , Cirrosis Hepática/tratamiento farmacológico , Albúminas
7.
Cancers (Basel) ; 15(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37509384

RESUMEN

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. Despite extensive research, the biological mechanisms underlying HCC's development and progression remain only partially understood. Chronic overeating and/or sedentary-lifestyle-associated obesity, which promote Non-Alcoholic Fatty Liver Disease (NAFLD), have recently emerged as worrying risk factors for HCC. NAFLD is characterized by excessive hepatocellular lipid accumulation (steatosis) and affects one quarter of the world's population. Steatosis progresses in the more severe inflammatory form, Non-Alcoholic Steatohepatitis (NASH), potentially leading to HCC. The incidence of NASH is expected to increase by up to 56% over the next 10 years. Better diagnoses and the establishment of effective treatments for NAFLD and HCC will require improvements in our understanding of the fundamental mechanisms of the disease's development. This review describes the pathogenesis of NAFLD and the mechanisms underlying the transition from NAFL/NASH to HCC. We also discuss a selection of appropriate preclinical models of NAFLD for research, from cellular models such as liver-on-a-chip models to in vivo models, focusing particularly on mouse models of dietary NAFLD-HCC.

8.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37344100

RESUMEN

BACKGROUND: Progress in breast cancer (BC) research relies on the availability of suitable cell lines that can be implanted in immunocompetent laboratory mice. The best studied mouse strain, C57BL/6, is also the only one for which multiple genetic variants are available to facilitate the exploration of the cancer-immunity dialog. Driven by the fact that no hormone receptor-positive (HR+) C57BL/6-derived mammary carcinoma cell lines are available, we decided to establish such cell lines. METHODS: BC was induced in female C57BL/6 mice using a synthetic progesterone analog (medroxyprogesterone acetate, MPA) combined with a DNA damaging agent (7,12-dimethylbenz[a]anthracene, DMBA). Cell lines were established from these tumors and selected for dual (estrogen+progesterone) receptor positivity, as well as transplantability into C57BL/6 immunocompetent females. RESULTS: One cell line, which we called B6BC, fulfilled these criteria and allowed for the establishment of invasive estrogen receptor-positive (ER+) tumors with features of epithelial to mesenchymal transition that were abundantly infiltrated by myeloid immune populations but scarcely by T lymphocytes, as determined by single-nucleus RNA sequencing and high-dimensional leukocyte profiling. Such tumors failed to respond to programmed cell death-1 (PD-1) blockade, but reduced their growth on treatment with ER antagonists, as well as with anthracycline-based chemotherapy, which was not influenced by T-cell depletion. Moreover, B6BC-derived tumors reduced their growth on CD11b blockade, indicating tumor sustainment by myeloid cells. The immune environment and treatment responses recapitulated by B6BC-derived tumors diverged from those of ER+ TS/A cell-derived tumors in BALB/C mice, and of ER- E0771 cell-derived and MPA/DMBA-induced tumors in C57BL/6 mice. CONCLUSIONS: B6BC is the first transplantable HR+ BC cell line derived from C57BL/6 mice and B6BC-derived tumors recapitulate the complex tumor microenvironment of locally advanced HR+ BC naturally resistant to PD-1 immunotherapy.


Asunto(s)
Carcinoma , Progesterona , Ratones , Femenino , Animales , Transición Epitelial-Mesenquimal , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Línea Celular Tumoral , Microambiente Tumoral
9.
Dev Cell ; 57(14): 1728-1741.e6, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35768000

RESUMEN

Non-alcoholic steatotic liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. NAFLD has a major effect on the intrinsic proliferative properties of hepatocytes. Here, we investigated the mechanisms underlying the activation of DNA damage response during NAFLD. Proliferating mouse NAFLD hepatocytes harbor replication stress (RS) with an alteration of the replication fork's speed and activation of ATR pathway, which is sufficient to cause DNA breaks. Nucleotide pool imbalance occurring during NAFLD is the key driver of RS. Remarkably, DNA lesions drive cGAS/STING pathway activation, a major component of cells' intrinsic immune response. The translational significance of this study was reiterated by showing that lipid overload in proliferating HepaRG was sufficient to induce RS and nucleotide pool imbalance. Moreover, livers from NAFLD patients displayed nucleotide pathway deregulation and cGAS/STING gene alteration. Altogether, our findings shed light on the mechanisms by which damaged NAFLD hepatocytes might promote disease progression.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Daño del ADN , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Nucleótidos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
11.
Cancer Res ; 82(8): 1470-1481, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35395067

RESUMEN

Oncogene activation leads to replication stress and promotes genomic instability. Here we combine optical mapping and whole-genome sequencing (WGS) to explore in depth the nature of structural variants (SV) induced by replication stress in cyclin-activated hepatocellular carcinomas (CCN-HCC). In addition to classical tandem duplications, CCN-HCC displayed frequent intra-chromosomal and interchromosomal templated insertion cycles (TIC), likely resulting from template switching events. Template switching preferentially involves active topologically associated domains that are proximal to one another within the 3D genome. Template sizes depend on the type of cyclin activation and are coordinated within each TIC. Replication stress induced continuous accumulation of SVs during CCN-HCC progression, fostering the acquisition of new driver alterations and large-scale copy-number changes at TIC borders. Together, this analysis sheds light on the mechanisms, dynamics, and consequences of SV accumulation in tumors with oncogene-induced replication stress. SIGNIFICANCE: Optical mapping and whole-genome sequencing integration unravels a unique signature of replication stress-induced structural variants that drive genomic evolution and the acquisition of driver events in CCN-HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Ciclinas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Oncogenes , Secuenciación Completa del Genoma
12.
Cell Death Dis ; 13(4): 356, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35436993

RESUMEN

Acyl-coenzyme-A-binding protein (ACBP), also known as a diazepam-binding inhibitor (DBI), is a potent stimulator of appetite and lipogenesis. Bioinformatic analyses combined with systematic screens revealed that peroxisome proliferator-activated receptor gamma (PPARγ) is the transcription factor that best explains the ACBP/DBI upregulation in metabolically active organs including the liver and adipose tissue. The PPARγ agonist rosiglitazone-induced ACBP/DBI upregulation, as well as weight gain, that could be prevented by knockout of Acbp/Dbi in mice. Moreover, liver-specific knockdown of Pparg prevented the high-fat diet (HFD)-induced upregulation of circulating ACBP/DBI levels and reduced body weight gain. Conversely, knockout of Acbp/Dbi prevented the HFD-induced upregulation of PPARγ. Notably, a single amino acid substitution (F77I) in the γ2 subunit of gamma-aminobutyric acid A receptor (GABAAR), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD-induced upregulation of ACBP/DBI, GABAAR γ2, and PPARγ. Based on these results, we postulate the existence of an obesogenic feedforward loop relying on ACBP/DBI, GABAAR, and PPARγ. Interruption of this vicious cycle, at any level, indistinguishably mitigates HFD-induced weight gain, hepatosteatosis, and hyperglycemia.


Asunto(s)
Inhibidor de la Unión a Diazepam , Receptores de GABA-A , Animales , Proteínas Portadoras , Coenzima A/metabolismo , Inhibidor de la Unión a Diazepam/genética , Inhibidor de la Unión a Diazepam/metabolismo , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Aumento de Peso , Ácido gamma-Aminobutírico
14.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34680300

RESUMEN

Polyploidy, also known as whole-genome amplification, is a condition in which the organism has more than two basic sets of chromosomes. Polyploidy frequently arises during tissue development and repair, and in age-associated diseases, such as cancer. Its consequences are diverse and clearly different between systems. The liver is a particularly fascinating organ in that it can adapt its ploidy to the physiological and pathological context. Polyploid hepatocytes are characterized in terms of the number of nuclei per cell (cellular ploidy; mononucleate/binucleate hepatocytes) and the number of chromosome sets in each nucleus (nuclear ploidy; diploid, tetraploid, octoploid). The advantages and disadvantages of polyploidy in mammals are not fully understood. About 30% of the hepatocytes in the human liver are polyploid. In this review, we explore the mechanisms underlying the development of polyploid cells, our current understanding of the regulation of polyploidization during development and pathophysiology and its consequences for liver function. We will also provide data shedding light on the ways in which polyploid hepatocytes cope with centrosome amplification. Finally, we discuss recent discoveries highlighting the possible roles of liver polyploidy in protecting against tumor formation, or, conversely, contributing to liver tumorigenesis.

15.
J Hepatol ; 74(6): 1386-1397, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33484773

RESUMEN

BACKGROUND & AIMS: The NKG2D system is a potent immunosurveillance mechanism in cancer, wherein the activating NK cell receptor (NKG2D) on immune cells recognises its cognate ligands on tumour cells. Herein, we evaluated the expression of NKG2D ligands in hepatocellular carcinoma (HCC), in both humans and mice, taking the genomic features of HCC tumours into account. METHODS: The expression of NKG2D ligands (MICA, MICB, ULBP1 and ULBP2) was analysed in large human HCC datasets by Fluidigm TaqMan and RNA-seq methods, and in 2 mouse models (mRNA and protein levels) reproducing the features of both major groups of human tumours. RESULTS: We provide compelling evidence that expression of the MICA and MICB ligands in human HCC is associated with tumour aggressiveness and poor patient outcome. We also found that the expression of ULBP1 and ULBP2 was associated with poor patient outcome, and was downregulated in CTNNB1-mutated HCCs displaying low levels of inflammation and associated with a better prognosis. We also found an inverse correlation between ULBP1/2 expression levels and the expression of ß-catenin target genes in patients with HCC, suggesting a role for ß-catenin signalling in inhibiting expression. We showed in HCC mouse models that ß-catenin signalling downregulated the expression of Rae-1 NKG2D ligands, orthologs of ULBPs, through TCF4 binding. CONCLUSIONS: We demonstrate that the expression of NKG2D ligands is associated with aggressive liver tumorigenesis and that the downregulation of these ligands by ß-catenin signalling may account for the less aggressive phenotype of CTNNB1-mutated HCC tumours. LAY SUMMARY: The NKG2D system is a potent immunosurveillance mechanism in cancer. However, its role in hepatocellular carcinoma development has not been widely investigated. Herein, we should that the expression of NKG2D ligands by tumour cells is associated with a more aggressive tumour subtype.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Hepáticas/metabolismo , Transducción de Señal/genética , beta Catenina/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Pronóstico , Adulto Joven
16.
Nat Rev Gastroenterol Hepatol ; 17(7): 391-405, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32242122

RESUMEN

Polyploidy (or whole-genome duplication) is the condition of having more than two basic sets of chromosomes. Polyploidization is well tolerated in many species and can lead to specific biological functions. In mammals, programmed polyploidization takes place during development in certain tissues, such as the heart and placenta, and is considered a feature of differentiation. However, unscheduled polyploidization can cause genomic instability and has been observed in pathological conditions, such as cancer. Polyploidy of the liver parenchyma was first described more than 100 years ago. The liver is one of the few mammalian organs that display changes in polyploidy during homeostasis, regeneration and in response to damage. In the human liver, approximately 30% of hepatocytes are polyploid. The polyploidy of hepatocytes results from both nuclear polyploidy (an increase in the amount of DNA per nucleus) and cellular polyploidy (an increase in the number of nuclei per cell). In this Review, we discuss the regulation of polyploidy in liver development and pathophysiology. We also provide an overview of current knowledge about the mechanisms of hepatocyte polyploidization, its biological importance and the fate of polyploid hepatocytes during liver tumorigenesis.


Asunto(s)
Hepatocitos/fisiología , Hígado/embriología , Hígado/fisiopatología , Poliploidía , Animales , Diferenciación Celular , Homeostasis , Humanos , Hígado/patología
17.
Gut ; 69(2): 355-364, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30979717

RESUMEN

OBJECTIVES: Polyploidy is a fascinating characteristic of liver parenchyma. Hepatocyte polyploidy depends on the DNA content of each nucleus (nuclear ploidy) and the number of nuclei per cell (cellular ploidy). Which role can be assigned to polyploidy during human hepatocellular carcinoma (HCC) development is still an open question. Here, we investigated whether a specific ploidy spectrum is associated with clinical and molecular features of HCC. DESIGN: Ploidy spectra were determined on surgically resected tissues from patients with HCC as well as healthy control tissues. To define ploidy profiles, a quantitative and qualitative in situ imaging approach was used on paraffin tissue liver sections. RESULTS: We first demonstrated that polyploid hepatocytes are the major components of human liver parenchyma, polyploidy being mainly cellular (binuclear hepatocytes). Across liver lobules, polyploid hepatocytes do not exhibit a specific zonation pattern. During liver tumorigenesis, cellular ploidy is drastically reduced; binuclear polyploid hepatocytes are barely present in HCC tumours. Remarkably, nuclear ploidy is specifically amplified in HCC tumours. In fact, nuclear ploidy is amplified in HCCs harbouring a low degree of differentiation and TP53 mutations. Finally, our results demonstrated that highly polyploid tumours are associated with a poor prognosis. CONCLUSIONS: Our results underline the importance of quantification of cellular and nuclear ploidy spectra during HCC tumorigenesis.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Poliploidía , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Estudios de Casos y Controles , Diferenciación Celular/genética , Núcleo Celular/patología , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Femenino , Hepatocitos/patología , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Pronóstico , Adulto Joven
18.
Sci Rep ; 9(1): 14614, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601995

RESUMEN

Mammalian p38α MAPK (Mitogen-Activated Protein Kinase) transduces a variety of extracellular signals that regulate cellular processes, such as inflammation, differentiation, proliferation or apoptosis. In the liver, depending of the physiopathological context, p38α acts as a negative regulator of hepatocyte proliferation as well as a promotor of inflammatory processes. However, its function during an acute injury, in adult liver, remains uncharacterized. In this study, using mice that are deficient in p38α specifically in mature hepatocytes, we unexpectedly found that lack of p38α protected against acute injury induced by CCl4 compound. We demonstrated that the hepatoprotective effect alleviated ROS accumulation and shaped the inflammatory response to promote efficient tissue repair. Mechanistically, we provided strong evidence that Ccl2/Ccl5 chemokines were crucial for a proper hepatoprotective response observed secondary to p38α ablation. Indeed, antibody blockade of Ccl2/Ccl5 was sufficient to abrogate hepatoprotection through a concomitant decrease of both inflammatory cells recruitment and antioxidative response that result ultimately in higher liver damages. Our findings suggest that targeting p38α expression and consequently orientating immune response may represent an attractive approach to favor tissue recovery after acute liver injury.


Asunto(s)
Regeneración Hepática , Hígado/efectos de los fármacos , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis , Tetracloruro de Carbono/efectos adversos , Diferenciación Celular , Proliferación Celular , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Cruzamientos Genéticos , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Hepatocitos , Inflamación , Hígado/lesiones , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo
19.
Med Sci (Paris) ; 35(6-7): 519-526, 2019.
Artículo en Francés | MEDLINE | ID: mdl-31274081

RESUMEN

Polyploidy (alias whole genome amplification) refers to organisms containing more than two basic sets of chromosomes. Polyploidy was first observed in plants more than a century ago, and it is known that such processes occur in many eukaryotes under a variety of circumstances. In mammals, the development of polyploid cells can contribute to tissue differentiation and therefore possibly a gain of function. Alternately, it can be associated with development of disease such as cancer. Polyploidy can occur because of cell fusion or abnormal cell division. Polyploidy is a common characteristic of the mammalian liver. Polyploidization occurs notably during liver development, but also in adults because of cellular stress. Recent progresses have unraveled the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.


Asunto(s)
Hígado/metabolismo , Hígado/patología , Poliploidía , Adulto , Animales , División Celular/genética , Fusión Celular , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/citología
20.
Curr Genet ; 65(5): 1081-1088, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30976832

RESUMEN

Ploidy is stably maintained in most human somatic cells by a sequential and tight coordination of cell cycle events. Undesired whole genome doublings or duplications are frequent in tumours and have been quite recently described as macro-evolutionary events associated with poor prognosis. In vitro and in vivo studies suggest that polyploidy can favour genome instability, facilitate the formation and progression of tumours, and modify their sensitivity to chemotherapeutic agents. Stress is strongly related to changes in ploidy and whole genome doublings. In this review, we summarize different mechanisms that promote polyploidization, describe a new type of stress able to trigger WGDs in S. cerevisiae, histone stress, and provide some examples and theoretical scenarios that support that cancer cells might suffer from this type of stress. We finally highlight some results showing that the kinase Swe1 (Wee1 in humans) has a role in sensing histone levels before cells enter mitosis, thereby avoiding their undesired consequences on chromosome segregation and ploidy control.


Asunto(s)
Inestabilidad Cromosómica , Histonas/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Estrés Fisiológico , Animales , Ciclo Celular , Susceptibilidad a Enfermedades , Inestabilidad Genómica , Humanos , Poliploidía , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA