Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 23(16): 3704-3715, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37483015

RESUMEN

Key to our ability to increase recombinant protein production through secretion is a better understanding of the pathways that interact to translate, process and export mature proteins to the surrounding environment, including the supporting cellular machinery that supplies necessary energy and building blocks. By combining droplet microfluidic screening with large-scale CRISPR libraries that perturb the expression of the majority of coding and non-coding genes in S. cerevisiae, we identified 345 genes for which an increase or decrease in gene expression resulted in increased secretion of α-amylase. Our results show that modulating the expression of genes involved in the trafficking of vesicles, endosome to Golgi transport, the phagophore assembly site, the cell cycle and energy supply improve α-amylase secretion. Besides protein-coding genes, we also find multiple long non-coding RNAs enriched in the vicinity of genes associated with endosomal, Golgi and vacuolar processes. We validated our results by overexpressing or deleting selected genes, which resulted in significant improvements in α-amylase secretion. The advantages, in terms of precision and speed, inherent to CRISPR based perturbations, enables iterative testing of new strains for increased protein secretion.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Amilasas/metabolismo , Microfluídica , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
2.
Microbiol Res ; 250: 126789, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34062341

RESUMEN

The sustainable future of food industry and consumer demands meet the need to generate out-performing new yeast variants. This is addressed by using the natural yeast diversity and breeding via sexual reproduction but the recovery of recombined spores in many industrial strains is limited. To circumvent this drawback, we examined whether or not the process of meiotic Return to Growth (RTG) that allows S. cerevisiae diploid cells to initiate meiotic recombination genome-wide and then re-enter into mitosis, will be effective to generate recombinants in a sterile and polyploid baking yeast strain (CNCM). We proceeded in four steps. First, whole genome sequencing of the CNCM strain revealed that it was an unbalanced polymorphic triploid. Second, we annotated a panel of genes likely involved in the success of the RTG process. Third, we examined the strain progression into sporulation and fourth, we developed an elutriation and reiterative RTG protocol that allowed to generate extensive libraries of recombinant RTGs, enriched up to 70 %. Altogether, the genome analysis of 122 RTG cells demonstrated that they were bona fide RTG recombinants since the vast majority retained the parental ploidy and exhibited allelic variations involving 1-60 recombined regions per cell with a length of ∼0.4-400 kb. Thus, beyond diploid laboratory strains, we demonstrated the proficiency of this natural non-GM and marker-free process to recombine a sterile and polyploid hybrid yeast, thus providing an unprecedented resource to screen improved traits.


Asunto(s)
Recombinación Homóloga , Meiosis/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Genoma Fúngico , Fenotipo , Poliploidía
3.
Regul Toxicol Pharmacol ; 83: 54-65, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27825987

RESUMEN

Bacillus subtilis CU1 is a recently described probiotic strain with beneficial effects on immune health in elderly subjects. The following work describes a series of studies supporting the safety of the strain for use as an ingredient in food and supplement preparations. Using a combination of 16S rDNA and gyrB nucleotide analyses, the species was identified as a member of the Bacillus subtilis complex (B. subtilis subsp. spizizenii). Further characterization of the organism at the strain level was achieved using random amplified polymorphic DNA polymerase chain reaction (RAPD PCR) and pulsed field gel electrophoresis (PFGE) analyses. B. subtilis CU1 did not demonstrate antibiotic resistance greater than existing regulatory cutoffs against clinically important antibiotics, did not induce hemolysis or produce surfactant factors, and was absent of toxigenic activity in vitro. Use of B. subtilis CU1 as a probiotic has recently been evaluated in a 16-week randomized, double-blind, placebo-controlled, parallel-arm study, in which 2 × 109 spores per day of B. subtilis CU1 were administered for a total 40 days to healthy elderly subjects (4 consumption periods of 10 days separated by 18-day washouts). This work describes safety related endpoints not previously reported. B. subtilis CU1 was safe and well-tolerated in the clinical subjects without undesirable physiological effects on markers of liver and kidney function, complete blood counts, hemodynamic parameters, and vital signs.


Asunto(s)
Bacillus subtilis/fisiología , Inocuidad de los Alimentos , Probióticos/toxicidad , Anciano , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Bacillus subtilis/patogenicidad , Seguridad de Productos para el Consumidor , Dermatoglifia del ADN , Girasa de ADN/genética , ADN Bacteriano/genética , Método Doble Ciego , Farmacorresistencia Bacteriana , Electroforesis en Gel de Campo Pulsado , Femenino , Hemólisis , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Ribotipificación , Medición de Riesgo , Factores de Tiempo
4.
FEMS Yeast Res ; 10(1): 93-103, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19922427

RESUMEN

The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene (LIP2) was monitored using a LIP2-beta-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.


Asunto(s)
Proteínas Fúngicas/fisiología , Regulación Fúngica de la Expresión Génica , Lipasa/biosíntesis , Triglicéridos/metabolismo , Yarrowia/fisiología , Fusión Artificial Génica , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Genes Reporteros , Glucosa/metabolismo , Ácido Oléico/metabolismo , Yarrowia/genética , Yarrowia/crecimiento & desarrollo , Yarrowia/metabolismo , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/genética
5.
Biochem J ; 409(1): 299-309, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17803462

RESUMEN

The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem. J. 378, 899-908]. In the present paper, we focus on the role of SFH2/CSR1, a hypoxic gene related to SEC14 and its involvement in lipid metabolism upon haem depletion in the absence of oleic acid supplementation. We observed that inactivation of SFH2 results in enhanced accumulation of SFA and phospholipid metabolism alterations. It results in premature growth arrest and leads to an exacerbated sensitivity to exogenous SFA. This phenotype is suppressed in the presence of exogenous oleic acid, or by a controlled expression of FAS1, one of the two genes encoding FAS. We present several lines of evidence to suggest that Sfh2p and oleic acid regulate SFA synthase in yeast at different levels: whereas oleic acid acts on FAS2 at the transcriptional level, we show that Sfh2p inhibits fatty acid synthase activity in response to haem depletion.


Asunto(s)
Ácido Graso Sintasas/química , Ácidos Grasos/metabolismo , Hemo/química , Ácido Oléico/química , Proteínas de Transferencia de Fosfolípidos/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Ácido Graso Sintasas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Genotipo , Metabolismo de los Lípidos , Lípidos/química , Mutación , Oxígeno/metabolismo , Fenotipo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...