Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Gastroenterol Hepatol ; 36(3): 731-739, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32870508

RESUMEN

BACKGROUND AND AIM: Although the gut microbiome of patients with ulcerative colitis (UC) has been characterized, no study has characterized the gut microbiome in acute severe colitis (ASC). We compared the gut microbiome of patients with UC, ASC, and healthy controls (HCs). METHODS: Patients with mild to moderate UC (n = 24), ASC (n = 19 with 21 episodes) and HCs (n = 50) were recruited prospectively. A 16SrDNA amplicon approach was used to explore gut microbial diversity and taxonomic repertoires. UC was diagnosed using European Crohn's and Colitis Organization guidelines, and ASC was diagnosed using Truelove and Witts' criteria. RESULTS: The normalized alpha diversity was significantly lower in ASC than mild-moderately active UC (P < 0.05) or HC (P < 0.001). The gut microbiome in ASC was highly unstable, as characterized by high intracohort variation (analyzed using J-divergence measure), which was significantly greater than in UC or HC. On principal coordinate analysis, the microbiome of HC and UC were similar, with the ASC cohort being distinct from both. Comparison of ranked abundances identified four distinct clusters of genera (G1, G2, G3, and G4), with specific trends in their abundance across three groups: G1/G2A clusters had the least, whereas G3 had the highest abundance in the ASC cohort. CONCLUSIONS: Gut microbial diversity is lower in ASC than mild-moderate UC or HCs. Gut microbiome composition is increasingly unstable in ASC, with a distinct abundance of specific genera varying between HCs and ASC. Mild-moderate UC lies within the spectrum.


Asunto(s)
Colitis Ulcerosa/microbiología , Colitis/microbiología , Microbioma Gastrointestinal , Enfermedad Aguda , Adolescente , Adulto , Femenino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Técnicas Microbiológicas , Persona de Mediana Edad , Técnicas de Amplificación de Ácido Nucleico , ARN Ribosómico 16S , Índice de Severidad de la Enfermedad
2.
Proc Natl Acad Sci U S A ; 117(38): 23762-23773, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32873641

RESUMEN

Bacterial species are hosts to horizontally acquired mobile genetic elements (MGEs), which encode virulence, toxin, antimicrobial resistance, and other metabolic functions. The bipartite genome of Vibrio cholerae harbors sporadic and conserved MGEs that contribute in the disease development and survival of the pathogens. For a comprehensive understanding of dynamics of MGEs in the bacterial genome, we engineered the genome of V. cholerae and examined in vitro and in vivo stability of genomic islands (GIs), integrative conjugative elements (ICEs), and prophages. Recombinant vectors carrying the integration module of these GIs, ICE and CTXΦ, helped us to understand the efficiency of integrations of MGEs in the V. cholerae chromosome. We have deleted more than 250 acquired genes from 6 different loci in the V. cholerae chromosome and showed contribution of CTX prophage in the essentiality of SOS response master regulator LexA, which is otherwise not essential for viability in other bacteria, including Escherichia coli In addition, we observed that the core genome-encoded RecA helps CTXΦ to bypass V. cholerae immunity and allow it to replicate in the host bacterium in the presence of similar prophage in the chromosome. Finally, our proteomics analysis reveals the importance of MGEs in modulating the levels of cellular proteome. This study engineered the genome of V. cholerae to remove all of the GIs, ICEs, and prophages and revealed important interactions between core and acquired genomes.


Asunto(s)
Genoma Bacteriano/genética , Islas Genómicas/genética , Vibrio cholerae/genética , Proteínas Bacterianas/genética , Conjugación Genética/genética , Ingeniería Genética , Secuencias Repetitivas Esparcidas/genética , Profagos/genética , Serina Endopeptidasas/genética , Vibrio cholerae/patogenicidad
3.
Proc Natl Acad Sci U S A ; 116(13): 6226-6231, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30867296

RESUMEN

The Bay of Bengal is known as the epicenter for seeding several devastating cholera outbreaks across the globe. Vibrio cholerae, the etiological agent of cholera, has extraordinary competency to acquire exogenous DNA by horizontal gene transfer (HGT) and adapt them into its genome for structuring metabolic processes, developing drug resistance, and colonizing the human intestine. Antimicrobial resistance (AMR) in V. cholerae has become a global concern. However, little is known about the identity of the resistance traits, source of AMR genes, acquisition process, and stability of the genetic elements linked with resistance genes in V. cholerae Here we present details of AMR profiles of 443 V. cholerae strains isolated from the stool samples of diarrheal patients from two regions of India. We sequenced the whole genome of multidrug-resistant (MDR) and extensively drug-resistant (XDR) V. cholerae to identify AMR genes and genomic elements that harbor the resistance traits. Our genomic findings were further confirmed by proteome analysis. We also engineered the genome of V. cholerae to monitor the importance of the autonomously replicating plasmid and core genome in the resistance profile. Our findings provided insights into the genomes of recent cholera isolates and identified several acquired traits including plasmids, transposons, integrative conjugative elements (ICEs), pathogenicity islands (PIs), prophages, and gene cassettes that confer fitness to the pathogen. The knowledge generated from this study would help in better understanding of V. cholerae evolution and management of cholera disease by providing clinical guidance on preferred treatment regimens.


Asunto(s)
Cólera/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Transferencia de Gen Horizontal , Genoma Bacteriano/genética , Vibrio cholerae/genética , Antibacterianos/farmacología , Conjugación Genética/genética , Elementos Transponibles de ADN/genética , Diarrea/microbiología , Evolución Molecular , Heces/microbiología , Variación Genética , Islas Genómicas/genética , Humanos , Imipenem/farmacología , India , Secuencias Repetitivas Esparcidas/genética , Fenotipo , Plásmidos/genética , Profagos/genética , Proteoma , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/aislamiento & purificación , Vibrio cholerae/patogenicidad , Vibrio cholerae O1/genética , Vibrio cholerae O1/aislamiento & purificación , Vibrio cholerae O1/patogenicidad , Secuenciación Completa del Genoma
4.
Microb Ecol ; 77(2): 546-557, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30009332

RESUMEN

Antimicrobial resistance (AMR) among bacterial species that resides in complex ecosystems is a natural phenomenon. Indiscriminate use of antimicrobials in healthcare, livestock, and agriculture provides an evolutionary advantage to the resistant variants to dominate the ecosystem. Ascendency of resistant variants threatens the efficacy of most, if not all, of the antimicrobial drugs commonly used to prevent and/or cure microbial infections. Resistant phenotype is very common in enteric bacteria. The most common mechanisms of AMR are enzymatic modifications to the antimicrobials or their target molecules. In enteric bacteria, most of the resistance traits are acquired by horizontal gene transfer from closely or distantly related bacterial population. AMR traits are generally linked with mobile genetic elements (MGEs) and could rapidly disseminate to the bacterial species through horizontal gene transfer (HGT) from a pool of resistance genes. Although prevalence of AMR genes among pathogenic bacteria is widely studied in the interest of infectious disease management, the resistance profile and the genetic traits that encode resistance to the commensal microbiota residing in the gut of healthy humans are not well-studied. In the present study, we have characterized AMR phenotypes and genotypes of five dominant commensal enteric bacteria isolated from the gut of healthy Indians. Our study revealed that like pathogenic bacteria, enteric commensals are also multidrug-resistant. The genes encoding antibiotic resistance are physically linked with MGEs and could disseminate vertically to the progeny and laterally to the distantly related microbial species. Consequently, the AMR genes present in the chromosome of commensal gut bacteria could be a potential source of resistance functions for other enteric pathogens.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Fenotipo , Simbiosis , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Elementos Transponibles de ADN/genética , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Transferencia de Gen Horizontal/genética , Genoma Bacteriano , Genotipo , Humanos , Secuencias Repetitivas Esparcidas/genética , Metagenoma/genética , Pruebas de Sensibilidad Microbiana , Transformación Genética/genética , Vibrio cholerae/genética , Secuenciación Completa del Genoma
5.
Sci Rep ; 7(1): 14468, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089611

RESUMEN

Emergence of antimicrobial resistant Gram-negative bacteria has created a serious global health crisis and threatens the effectiveness of most, if not all, antibiotics commonly used to prevent and treat bacterial infections. There is a dearth of detailed studies on the prevalence of antimicrobial resistance (AMR) patterns in India. Here, we have isolated and examined AMR patterns of 654 enteric pathogens and investigated complete genome sequences of isolates from six representative genera, which in aggregate encode resistance against 22 antibiotics representing nine distinct drug classes. This study revealed that ~97% isolates are resistant against ≥2 antibiotics, ~24% isolates are resistant against ≥10 antibiotics and ~3% isolates are resistant against ≥15 antibiotics. Analyses of whole genome sequences of six extensive drug resistant enteric pathogens revealed presence of multiple mobile genetic elements, which are physically linked with resistance traits. These elements are therefore appearing to be responsible for disseminating drug resistance among bacteria through horizontal gene transfer. The present study provides insights into the linkages between the resistance patterns to certain antibiotics and their usage in India. The findings would be useful to understand the genetics of resistance traits and severity of and difficulty in tackling AMR enteric pathogens.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Resistencia a Múltiples Medicamentos/genética , Microbioma Gastrointestinal/genética , Antibacterianos/farmacología , Bacterias/genética , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/genética , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Humanos , India , Pruebas de Sensibilidad Microbiana , Fenotipo , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...