Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Genet ; 11: 543890, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193617

RESUMEN

Poultry play an important role in the agriculture of many African countries. The majority of chickens in sub-Saharan Africa are indigenous, raised in villages under semi-scavenging conditions. Vaccinations and biosecurity measures rarely apply, and infectious diseases remain a major cause of mortality and reduced productivity. Genomic selection for disease resistance offers a potentially sustainable solution but this requires sufficient numbers of individual birds with genomic and phenotypic data, which is often a challenge to collect in the small populations of indigenous chicken ecotypes. The use of information across-ecotypes presents an attractive possibility to increase the relevant numbers and the accuracy of genomic selection. In this study, we performed a joint analysis of two distinct Ethiopian indigenous chicken ecotypes to investigate the genomic architecture of important health and productivity traits and explore the feasibility of conducting genomic selection across-ecotype. Phenotypic traits considered were antibody response to Infectious Bursal Disease (IBDV), Marek's Disease (MDV), Fowl Cholera (PM) and Fowl Typhoid (SG), resistance to Eimeria and cestode parasitism, and productivity [body weight and body condition score (BCS)]. Combined data from the two chicken ecotypes, Horro (n = 384) and Jarso (n = 376), were jointly analyzed for genetic parameter estimation, genome-wide association studies (GWAS), genomic breeding value (GEBVs) calculation, genomic predictions, whole-genome sequencing (WGS), and pathways analyses. Estimates of across-ecotype heritability were significant and moderate in magnitude (0.22-0.47) for all traits except for SG and BCS. GWAS identified several significant genomic associations with health and productivity traits. The WGS analysis revealed putative candidate genes and mutations for IBDV (TOLLIP, ANGPTL5, BCL9, THEMIS2), MDV (GRM7), SG (MAP3K21), Eimeria (TOM1L1) and cestodes (TNFAIP1, ATG9A, NOS2) parasitism, which warrant further investigation. Reliability of GEBVs increased compared to within-ecotype calculations but accuracy of genomic prediction did not, probably because the genetic distance between the two ecotypes offset the benefit from increased sample size. However, for some traits genomic prediction was only feasible in across-ecotype analysis. Our results generally underpin the potential of genomic selection to enhance health and productivity across-ecotypes. Future studies should establish the required minimum sample size and genetic similarity between ecotypes to ensure accurate joint genomic selection.

2.
Int J Public Health ; 65(6): 713-714, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32601723

RESUMEN

OBJECTIVE: This piece of work proposes a way for the wise management of pseudoscience and conspiracy theories. METHODS: This work encompassed a review of relevant literature and synthesized the critical thoughts on the proper management of pseudoscience and conspiracy theories. RESULT: The coronavirus disease 2019 (COVID-19) overwhelmingly challenges the competency of the digital generation. Consequently, public had been left stranded, helpless and anxious, especially during the peak season of the pandemic. However, this crisis creates a conducive environment for pseudoscience and conspiracy theories to proliferate. Pseudoscience and conspiracy theories negatively impacted the effort made to contain COVID-19. CONCLUSION: This piece of work, however, argues that although pseudoscience and conspiracy theories are real threats to conventional science, effort needs to be made to develop a sort of database to archive and curate them for downstream use.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Pandemias , Neumonía Viral/epidemiología , Teoría Psicológica , Ciencia/normas , COVID-19 , Humanos
3.
Nat Sustain ; 1(10): 574-582, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30411000

RESUMEN

Village chickens are ubiquitous in smallholder farming systems, contributing to household, local and national economies under diverse environmental, economic and cultural settings. However, they are raised in challenging environments where productivity is low while mortality is high. There is much interest in utilizing indigenous genetic resources to produce a chicken resilient to its environment, whilst providing the basis of an economically sustainable enterprise. Globally, however, a wide variety of interventions have so far proved unable to deliver sustainable improvements. Here, we show that regional differences in trait preferences and parasite burden are associated with distinct chicken genepools, likely in response to interacting natural and human-driven (economic and social) selection pressures. Drivers of regional differences include marketing opportunities, cultural preferences, agro-ecologies and parasite populations, and are evident in system adaptations, such as management practices, population dynamics and bird genotypes. Our results provide sound multidisciplinary evidence to support previous observations that sustainable poultry development interventions for smallholder farmers, including breeding programs, should be locally tailored and designed for flexible implementation.

4.
Genet Sel Evol ; 48(1): 74, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27687164

RESUMEN

BACKGROUND: The majority of chickens in sub-Saharan Africa are indigenous ecotypes, well adapted to the local environment and raised in scavenging production systems. Although they are generally resilient to disease challenge, routine vaccination and biosecurity measures are rarely applied and infectious diseases remain a major cause of mortality and reduced productivity. Management and genetic improvement programmes are hampered by lack of routine data recording. Selective breeding based on genomic technologies may provide the means to enhance sustainability. In this study, we investigated the genetic architecture of antibody response to four major infectious diseases [infectious bursal disease (IBDV), Marek's disease (MDV), fowl typhoid (SG), fowl cholera (PM)] and resistance to Eimeria and cestode parasitism, along with two production traits [body weight and body condition score (BCS)] in two distinct indigenous Ethiopian chicken ecotypes. We conducted variance component analyses, genome-wide association studies, and pathway and selective sweep analyses. RESULTS: The large majority of birds was found to have antibody titres for all pathogens and were infected with both parasites, suggesting almost universal exposure. We derived significant moderate to high heritabilities for IBDV, MDV and PM antibody titres, cestodes infestation, body weight and BCS. We identified single nucleotide polymorphisms (SNPs) with genome-wide significance for each trait. Based on these associations, we identified for each trait, pathways, networks and functional gene clusters that include plausible candidate genes. Selective sweep analyses revealed a locus on chromosome 18 associated with viral antibody titres and resistance to Eimeria parasitism that is within a positive selection signal. We found no significant genetic correlations between production, immune and disease traits, implying that selection for altered antibody response and/or disease resistance will not affect production. CONCLUSIONS: We confirmed the presence of genetic variability and identified SNPs significantly associated with immune, disease and production traits in indigenous village chickens. Results underpin the feasibility of concomitant genetic improvement for enhanced antibody response, resistance to parasitism and productivity within and across indigenous chicken ecotypes.

6.
BMC Vet Res ; 9: 208, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24125076

RESUMEN

BACKGROUND: Coccidiosis, caused by species of the apicomplexan parasite Eimeria, is a major disease of chickens. Eimeria species are present world-wide, and are ubiquitous under intensive farming methods. However, prevalence of Eimeria species is not uniform across production systems. In developing countries such as Ethiopia, a high proportion of chicken production occurs on rural smallholdings (i.e. 'village chicken production') where infectious diseases constrain productivity and surveillance is low. Coccidiosis is reported to be prevalent in these areas. However, a reliance on oocyst morphology to determine the infecting species may impede accurate diagnosis. Here, we used cross-sectional and longitudinal studies to investigate the prevalence of Eimeria oocyst shedding at two rural sites in the Ethiopian highlands. RESULTS: Faecal samples were collected from 767 randomly selected chickens in May or October 2011. In addition, 110 chickens were sampled in both May and October. Eimeria oocysts were detected microscopically in 427 (56%, 95% confidence interval (95% CI) 52-59%) of the 767 faecal samples tested. Moderate clustering of positive birds was detected within households, perhaps suggesting common risk factors or exposure pathways. Seven species of Eimeria were detected by real time PCR in a subset of samples further analysed, with the prevalence of some species varying by region. Co-infections were common; 64% (23/36, 95% CI 46-79%) of positive samples contained more than one Eimeria spp. Despite frequent infection and co-infection overt clinical disease was not reported. Eimeria oocysts were detected significantly more frequently in October (248/384, 65%, 95% CI 60-69%), following the main rainy season, compared to May (179/383, 47%, 95% CI 42-52%, p < 0.001). Eimeria oocyst positivity in May did not significantly affect the likelihood of detecting Eimeria oocyst five months later perhaps suggesting infection with different species or immunologically distinct strains. CONCLUSIONS: Eimeria spp oocysts may be frequently detected in faecal samples from village chickens in Ethiopia. Co-infection with multiple Eimeria spp was common and almost half of Eimeria positive birds had at least one highly pathogenic species detected. Despite this, all sampled birds were free of overt disease. Although there was no evidence of a difference in the prevalence of oocysts in faecal samples between study regions, there was evidence of variation in the prevalence of some species, perhaps suggesting regional differences in exposure to risk factors associated with the birds, their management and/or location-specific environmental and ecological factors.


Asunto(s)
Pollos , Coccidiosis/veterinaria , Eimeria/aislamiento & purificación , Enfermedades de las Aves de Corral/parasitología , Crianza de Animales Domésticos , Animales , Coccidiosis/epidemiología , Coccidiosis/parasitología , Eimeria/clasificación , Eimeria/genética , Etiopía/epidemiología , Heces/parasitología , Oocistos , Enfermedades de las Aves de Corral/epidemiología , Prevalencia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA