Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Macro Lett ; 13(5): 644-650, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38717381

RESUMEN

Flow chemistry presents many advantages over batch processes for the fast and continuous production of polymers under more robust, safer, and easily scalable conditions. Although largely exploited for chain-growth polymerizations, it has rarely been applied to step-growth polymerizations (SGP) due to their inherent limitations. Here, we report the facile and fast preparation of an emerging class of nonisocyanate polyurethanes, i.e., CO2-based poly(oxazolidone)s, by SGP in continuous flow reactors. Importantly, we also demonstrate that functional poly(oxazolidone)s are easily prepared by telescoping a flow module where SGP occurs with reagents able to simultaneously promote two polymer derivatizations in a second module, i.e., dehydration followed by cationic thiol-ene to yield poly(N,S-acetal oxazolidone)s. The functional polymer is produced at a high rate and functionalization degree, without requiring the isolation of any intermediates. This work demonstrates the enormous potential of flow technology for the facile and fast continuous production of functional polymers by SGP.

2.
Biomacromolecules ; 25(3): 1810-1824, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38360581

RESUMEN

Polyurethanes (PUs) have adjustable mechanical properties, making them suitable for a wide range of applications, including in the biomedical field. Historically, these PUs have been synthesized from isocyanates, which are toxic compounds to handle. This has encouraged the search for safer and more environmentally friendly synthetic routes, leading today to the production of nonisocyanate polyurethanes (NIPUs). Among these NIPUs, polyhydroxyurethanes (PHUs) bear additional hydroxyl groups, which are particularly attractive for derivatizing and adjusting their physicochemical properties. In this paper, polyether-based NIPU elastomers with variable stiffness are designed by functionalizing the hydroxyl groups of a poly(propylene glycol)-PHU by a cyclic carbonate carrying a pendant unsaturation, enabling them to be post-photo-cross-linked with polythiols (thiol-ene). Elastomers with remarkable mechanical properties whose stiffness can be adjusted are obtained. Thanks to the unique viscous properties of these PHU derivatives and their short gel times observed by rheology experiments, formulations for light-based three-dimensional (3D) printing have been developed. Objects were 3D-printed by digital light processing with a resolution down to the micrometer scale, demonstrating their ability to target various designs of prime importance for personalized medicine. In vitro biocompatibility tests have confirmed the noncytotoxicity of these materials for human fibroblasts. In vitro hemocompatibility tests have revealed that they do not induce hemolytic effects, they do not increase platelet adhesion, nor activate coagulation, demonstrating their potential for future applications in the cardiovascular field.


Asunto(s)
Elastómeros , Poliuretanos , Humanos , Poliuretanos/farmacología , Poliuretanos/química , Elastómeros/química , Isocianatos/química , Prótesis e Implantes , Supuración
3.
Angew Chem Int Ed Engl ; 63(10): e202319060, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38197641

RESUMEN

A subtle combination of fundamental and applied organic chemistry toward process intensification is demonstrated for the large-scale production of bio-based glycerol carbonate under flow conditions. The direct carbonation of bio-based glycidol with CO2 is successfully carried out under intensified flow conditions, with Barton's base as a potent homogeneous organocatalyst. Process metrics for the CO2 coupling step (for the upstream production, output: 3.6 kg day-1 , Space Time Yield (STY): 2.7 kg h-1 L-1 , Environmental factor (E-factor): 4.7) outclass previous reports. High conversion and selectivity are achieved in less than 30 s of residence time at pilot scale with a stoichiometric amount of CO2 . Supporting DFT computations reveal the unique features of the mechanism in presence of Brønsted bases.

4.
J Am Chem Soc ; 146(1): 988-1000, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38157412

RESUMEN

For decades, self-blown polyurethane foams─found in an impressive range of materials─are produced by the toxic isocyanate chemistry and are difficult to recycle. Producing them in existing production plants by a rapid isocyanate-free self-blowing process from room temperature (RT) formulations is a long-lasting challenge. The recent water-induced self-blowing of nonisocyanate polyurethane (NIPU) formulations composed of a CO2-based tricyclic carbonate, diamine, water, and a catalyst successfully addressed the isocyanate issue, however failed to provide foams at RT. Herein, we elaborate a practical solution to empower the NIPU foam formation in record timeframes from RT formulations. We generate cascade exotherms by the addition of a highly reactive triamine and an epoxide to the formulation of the water-induced self-foaming process. These exotherms, combined to a fast cross-linking imparted by the triamine and epoxide, rapidly raise the temperature to the foaming threshold and deliver hybrid NIPU foams in 5 min with KOH as a catalyst. Careful selection of the monomers enables producing foams with a wide range of properties, as well as with an unprecedented high biobased content up to 90 wt %. Moreover, foams can be upcycled into polymer films by hot pressing, offering them a facile reuse scenario. This robust cheap process opens huge perspectives for greener foams of high biobased contents, expectedly responding to the sustainability demands of the foam sector. It is potentially compatible to the retrofitting of industrial foaming infrastructures, which is of paramount importance to accommodate existing foam production plants and address the huge foam market demands.

5.
J Am Chem Soc ; 145(46): 25450-25462, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37942776

RESUMEN

Finding new chemistry platforms for easily recyclable polymers has become a key challenge to face environmental concerns and the growing plastics demand. Here, we report a dynamic chemistry between CO2-sourced alkylidene oxazolidones and thiols, delivering circular non-isocyanate polyurethane networks embedding N,S-acetal bonds. The production of oxazolidone monomers from CO2 is facile and scalable starting from cheap reagents. Their copolymerization with a polythiol occurs under mild conditions in the presence of a catalytic amount of acid to furnish polymer networks. The polymer structure is easily tuned by virtue of monomer design, translating into a wide panel of mechanical properties similar to commodity plastics, ranging from PDMS-like elastomers [with Young's modulus (E) of 2.9 MPa and elongation at break (εbreak) of 159%] to polystyrene-like rigid plastics (with E = 2400 MPa, εbreak = 3%). The highly dissociative nature of the N,S-acetal bonds is demonstrated and exploited to offer three different recycling scenarios to the thermosets: (1) mechanical recycling by compression molding, extrusion, or injection molding─with multiple recycling (at least 10 times) without any material property deterioration, (2) chemical recycling through depolymerization, followed by repolymerization, also applicable to composites, and (3) upcycling of two different oxazolidone-based thermosets into a single one with distinct properties. This work highlights a new facile and scalable chemical platform for designing highly dynamic polymer networks containing elusive oxazolidone motifs. The versatility of this chemistry shows great potential for the preparation of materials (including composites) of tuneable structures and properties, with multiple end-of-life scenarios.

6.
J Thromb Haemost ; 21(9): 2485-2498, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37196847

RESUMEN

BACKGROUND: Prosthetic heart valves are the only treatment for most patients with severe valvular heart disease. Mechanical valves, made of metallic components, are the most long-lasting type of replacement valves. However, they are prone to thrombosis and require permanent anticoagulation and monitoring, which leads to higher risk of bleeding and impacts the patient's quality of life. OBJECTIVES: To develop a bioactive coating for mechanical valves with the aim to prevent thrombosis and improve patient outcomes. METHODS: We used a catechol-based approach to produce a drug-releasing multilayer coating adherent to mechanical valves. The hemodynamic performance of coated Open Pivot valves was verified in a heart model tester, and coating durability in the long term was assessed in a durability tester producing accelerated cardiac cycles. Coating antithrombotic activity was evaluated in vitro with human plasma or whole blood under static and flow conditions and in vivo after surgical valve implantation in a pig's thoracic aorta. RESULTS: We developed an antithrombotic coating consisting of ticagrelor- and minocycline-releasing cross-linked nanogels covalently linked to polyethylene glycol. We demonstrated the hydrodynamic performance, durability, and hemocompatibility of coated valves. The coating did not increase the contact phase activation of coagulation, and it prevented plasma protein adsorption, platelet adhesion, and thrombus formation. Implantation of coated valves in nonanticoagulated pigs for 1 month efficiently reduced valve thrombosis compared with noncoated valves. CONCLUSION: Our coating efficiently inhibited mechanical valve thrombosis, which might solve the issues of anticoagulant use in patients and the number of revision surgeries due to valve thrombosis despite anticoagulation.


Asunto(s)
Enfermedades de las Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Trombosis , Humanos , Animales , Porcinos , Fibrinolíticos/farmacología , Calidad de Vida , Trombosis/etiología , Trombosis/prevención & control , Prótesis Valvulares Cardíacas/efectos adversos , Anticoagulantes , Válvulas Cardíacas
7.
ChemSusChem ; 16(14): e202300225, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943420

RESUMEN

Poly(monothiocarbonate)s are an interesting class of sulfur-containing materials whose application as solid polymer electrolytes was barely studied, certainly due to the elusive production of diversified polymer architectures. Herein, a new liquid CO2 -sourced bis(α-alkylidene cyclic carbonate) monomer was designed at high yield to allow its one-step and solvent-free copolymerization with thiols to produce linear and cross-linked polymers in mild conditions. The influence of the monomer structure on the thermal properties and the ionic conductivity of linear polymers was assessed. The polymer network showed to be thermally re-processable owing to the dynamic nature of the monothiocarbonate bonds. A solid polymer electrolyte was easily obtained from the cross-linked material when combined with LiTFSI salt. The solid polymer electrolyte was characterized by an ionic conductivity reaching 6×10-6  S cm-1 at room temperature with a lithium transference number of 0.37 and a wide electrochemical stability window (4.0 V vs Li0 /Li+ ) valid for lithium cycling. This work thus reports an attractive valorizing approach for carbon dioxide to deliver under mild operating conditions poly(monothiocarbonate)-containing novel covalent adaptable network materials of high potential for energy applications, especially as solid electrolytes for batteries.

8.
Biomacromolecules ; 24(10): 4375-4384, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-36113039

RESUMEN

In this work, isocyanate-free formulations for poly(propylene glycol) polyurethane elastomers are studied. These formulations are based on poly(propylene glycol) end-capped by CO2-sourced cyclic carbonate (bisCC PPG) macromonomers able to react with amines leading to poly(hydroxyurethane)s. In order to obtain covalent networks, two curing approaches are studied. First, the direct thermally activated cross-linking of bisCC PPG with a mixture of various aliphatic or aromatic diamines and a triamine is investigated, and in particular the nature of the diamine on the mechanical properties. In the second approach, UV-activated formulations are developed by reacting bisCC PPG with allylamine followed by the addition of a trithiol by photoactivated thiol-ene reaction. The swelling tests show that both systems provide highly cross-linked polymer networks and complementary characterizations highlighted excellent mechanical properties. Thanks to the fast curing and adapted viscosity of the developed photoactive formulation, the latter was found suitable for use as a photoresin for 3D printing as demonstrated by printing a vaginal ring by a nozzle-based photoprinter.


Asunto(s)
Elastómeros , Propilenglicol , Polímeros , Poliuretanos , Isocianatos
9.
ACS Appl Polym Mater ; 4(12): 8786-8794, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36532887

RESUMEN

The polyaddition between dicyclic carbonates and diamines leading to poly(hydroxy urethane)s (PHUs) has emerged as the preferred method for the synthesis of green, non-isocyanate polyurethanes. However, when proposed for use as structural adhesives, the long times for completion of aminolysis of the 5-membered cyclic carbonates under ambient conditions force the use of complementary chemistries to accelerate the curing process. In this work, a system that combines an amino-terminated PHU (NH2-PHU-NH2), an epoxy resin, and a thiol compound was employed to develop high-shear strength PHU-epoxy hybrid adhesives able to cure at room temperature in short times. A NH2-PHU-NH2 prepolymer synthesized by using a sub-stoichiometric quantity of dicyclic carbonates was mixed with a bisphenol A-based epoxy resin for the preparation of the structural adhesive. While this adhesive showed good lap-shear strength and shear resistance under static load and temperature, the curing process was slow. In order to speed up the curing process, a thiol (trimethylolpropane tris(3-mercapto propionate)) was added and its impact on the curing process as well as on the adhesive properties was evaluated. The trifunctional thiol additive allowed for faster curing in the presence of the 1,1,3,3-tetramethylguanidine basic catalyst. Moreover, a combination of NH2-PHU-NH2 and the thiol as curing agents for the epoxy resin resulted in adhesives with superior toughness, without any deterioration of the ultimate lap-shear strength or shear resistance under load and temperature, making these adhesives suitable for high-demand applications in the automotive industry.

10.
Angew Chem Int Ed Engl ; 61(51): e202213422, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36278827

RESUMEN

For 80 years, polyisocyanates and polyols were central building blocks for the industrial fabrication of polyurethane (PU) foams. By their partial hydrolysis, isocyanates release CO2 that expands the PU network. Substituting this toxic isocyanate-based chemistry by a more sustainable variant-that in situ forms CO2 by hydrolysis of a comonomer-is urgently needed for producing greener cellular materials. Herein, we report a facile, up-scalable process, potentially compatible to existing infrastructures, to rapidly prepare water-induced self-blown non-isocyanate polyurethane (NIPU) foams. We show that formulations composed of poly(cyclic carbonate)s and polyamines furnish rigid or flexible NIPU foams by partial hydrolysis of cyclic carbonates in the presence of a catalyst. By utilizing readily available low cost starting materials, this simple but robust process gives access to greener PU foams, expectedly responding to the sustainability demands of many sectors.


Asunto(s)
Isocianatos , Agua , Isocianatos/química , Dióxido de Carbono , Poliuretanos/química
11.
ChemSusChem ; 15(18): e202200913, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35839135

RESUMEN

Green resources for lithium-based batteries excite many researchers due to their eco-friendly nature. In this work, a sustainable bio-based solid-state electrolyte was developed based on carbonated soybean oil (CSBO), obtained by organocatalyzed coupling of CO2 to epoxidized soybean oil. CSBO coupled with lithium bis(trifluoromethanesulfonyl)imide salt on a bio-based cellulose separator resulted in free-standing membranes. Those membranes on electrochemical measurements exhibited ionic conductivity of around 10-3  S cm-1 at 100 °C and around 10-6  S cm-1 at room temperature with wide electrochemical stability window (up to 4.6 V vs. Li/Li+ ) and transference number up to 0.39 at RT. Further investigations on the galvanostatic charge-discharge of LiFePO4 cathodes with CSBO-based electrolyte membranes and lithium metal anodes delivered the gravimetric capacity of 112 and 157 mAh g-1 at RT and 60 °C, respectively, providing a promising direction to further develop bio-based solid electrolytes for sustainable solid-state lithium batteries.


Asunto(s)
Litio , Aceite de Soja , Dióxido de Carbono , Carbonatos , Celulosa , Electrólitos
12.
ACS Polym Au ; 2(3): 194-207, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35698472

RESUMEN

Poly(hydroxy urethane)s (PHUs) based on 5-membered cyclic carbonates have emerged as sustainable alternatives to conventional isocyanate-based polyurethanes. However, while from the point of view of sustainability they represent an improvement, their properties are still not competitive with conventional polyurethanes. In this work, the potential of PHUs as reversible hot-melt adhesives is discussed. We found that with a judicious choice of reagents (i.e., the dicyclic carbonate and diamine), the detrimental hydrogen bonding between the soft segment of the chains and the pendant hydroxyl groups was partially avoided, thus imparting PHUs with hot-melt adhesion properties (i.e., adhesion at elevated temperatures and cohesiveness at a temperature lower than T g/T m). The importance of a balanced hard to soft segment ratio, along with the relevance of the chain extender in the final properties, is highlighted. Addition of aliphatic diamines (HMDA, 1,12-DAD) resulted in rubbery materials, while the employment of cycloaliphatic (CBMA) or aromatic ones (MXDA, PXDA) led to materials with hot-melt adhesive properties. The thermoreversibility of all compositions was assessed by rebonding specimens after lap-shear tests. Lap-shear strength values that were comparable to the virgin adhesives were observed. The breaking and reformation of hydrogen bonding interactions was demonstrated by FTIR measurements at different temperatures, as well as by rheological frequency sweep experiments. In order to mitigate the negative impact of the low molar mass PHUs and to enhance the service temperature of the adhesives, a hybrid PHU was prepared by adding a small amount of an epoxy resin, which acts as a cross-linker. These hybrid PHUs maintain the thermoreversibility displayed by thermoplastic PHUs while providing better adhesion at elevated temperatures. We believe that this work provides some important insights into the design of PHU-based hot-melt adhesives.

13.
ACS Macro Lett ; 11(2): 236-242, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35574775

RESUMEN

We report an approach to fabricate self-blown nonisocyanate polyurethane (NIPU) foams by capitalizing on the divergent chemistries of amines with cyclic carbonates─creating the polymer network─and thiolactone─delivering in situ a thiol that generates the blowing agent (CO2) by reaction with a cyclic carbonate. Multiple linkages (hydroxyurethanes, thioethers, and amides) are created within the polymer network by this domino process. This one-pot methodology furnishes flexible to rigid foams with open-cell morphology at moderate temperature. The foams are easily repurposed into films or structural composites by thermal treatment, showing the first example of recyclable NIPU foams. Remarkably, both the formation and the recycling of the thermoset foams do not necessarily require the use of a catalyst. This facile and robust process is opening new avenues for designing more sustainable PU foams and offers new end-of-life options by facile material repurposing.

14.
Angew Chem Int Ed Engl ; 61(22): e202116066, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35266271

RESUMEN

Carbon dioxide is a renewable, inexhaustible, and cheap alternative to fossil resources for the production of fine chemicals and plastics. It can notably be converted into exovinylene cyclic carbonates, unique synthons gaining momentum for the preparation of an impressive range of important organic molecules and functional polymers, in reactions proceeding with 100 % atom economy under mild operating conditions in most cases. This Review summarizes the recent advances in their synthesis with particular attention on describing the catalysts needed for their preparation and discussing the unique reactivity of these CO2 -based heterocycles for the construction of diverse organic building blocks and (functional) polymers. We also discuss the challenges and the future perspectives in the field.

15.
ACS Appl Mater Interfaces ; 13(45): 54396-54408, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34747169

RESUMEN

Formaldehyde (FA) is a harmful chemical product largely used for producing resins found in our living spaces. Residual FA that leaches out the resin contributes to our indoor air pollution and causes some important health issues. Systems able to capture this volatile organic compound are highly desirable; however, traditional adsorbents are most often restricted to air filtration systems. Herein, we report novel waterborne coatings that are acting as a FA sponge for indoor air decontamination. These coatings, of the poly(hydroxyurethane) (PHU) type, rich in primary amine groups, are prepared by the polyaddition of a hydrosoluble dicyclic carbonate to a polyamine in water at room temperature under catalyst-free conditions. We highlight the importance of the choice of the polyamine on the curing rate of the formulation and on the FA capture ability of PHU. The excellent FA capturing ability of the best candidate is rationalized by investigating the action mode of the polyamine used to construct PHUs. With poly(vinyl amine), FA is covalently and permanently bound to PHU, with no release over time. The performance of the coating in FA abatement is impressive, with more than 90% of captured FA after one day of contact. The facility to prepare these transparent and colorless coatings from waterborne formulations gives access to new efficient indoor air depolluting solutions, potentially applicable to various surfaces of our living spaces (wall, ceiling, etc.).

16.
ACS Macro Lett ; 10(3): 313-320, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35549068

RESUMEN

Partly or fully renewable (co)polymers are gaining interest in both academia and industry. Polyethylene is a widely used polymer, classically derived from fossil fuels, with a high versatility stemming from the introduction of comonomers altering the mechanical properties. The introduction of renewable functionalities into this polymer is highly attractive to obtain functional, tunable, and at least partially renewable polyethylenes. We herein report the introduction of biosourced cyclic carbonates into polyethylene using organometallic-mediated radical polymerization under mild conditions. Molecular weights of up to 14 600 g mol-1 with dispersities as low as 1.19 were obtained, and the cyclic carbonate content could be easily tuned by the ethylene pressure during the polymerization. As a proof of concept, the hydrolysis of the cyclic carbonates of a representative copolymer was explored, and it provided polyethylene-bearing vicinal diols, with a hydrolysis degree of 71%. Given the multitude of chemoselective modifications possible on cyclic carbonates as well as the fact that many allylic- and alkylidene-type cyclic carbonates are accessible from renewable resources, this work opens up an avenue for the design of functional and more sustainable polyethylenes.


Asunto(s)
Carbonatos , Polietileno , Peso Molecular , Polimerizacion , Polímeros
17.
ACS Sustain Chem Eng ; 9(29): 9541-9562, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35692866

RESUMEN

Polyurethane (PU) adhesives and coatings are widely used to fabricate high-quality materials due to their excellent properties and their versatile nature, which stems from the wide range of commercially available polyisocyanate and polyol precursors. This polymer family has traditionally been used in a wide range of adhesive applications including the bonding of footwear soles, bonding of wood (flooring) to concrete (subflooring), in the automotive industry for adhering different car parts, and in rotor blades, in which large surfaces are required to be adhered. Moreover, PUs are also frequently applied as coatings/paints for automotive finishes and can be applied over a wide range of substrates such as wood, metal, plastic, and textiles. One of the major drawbacks of this polymer family lies in the use of toxic isocyanate-based starting materials. In the context of the REACH regulation, which places restrictions on the use of substances containing free isocyanates, it is now urgent to find greener routes to PUs. While non-isocyanate polyurethanes (NIPUs) based on the polyaddition of poly(cyclic carbonate)s to polyamines have emerged in the past decade as greener alternatives to conventional PUs, their industrial implementation is at an early stage of development. In this review article, recent advances in the application of NIPUs in the field of adhesives and coatings are summarized. The article also draws attention to the opportunities and challenges of implementing NIPUs at the industrial scale.

18.
Macromol Rapid Commun ; 42(3): e2000482, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33047423

RESUMEN

Polyurethane hydrogels are attractive materials finding multiple applications in various sectors of prime importance; however, they are still prepared by the toxic isocyanate chemistry. Herein the facile and direct preparation in water at room temperature of a large palette of anionic, cationic, or neutral polyurethane hydrogels by a non-isocyanate route from readily available diamines and new hydrosoluble polymers bearing cyclic carbonates is reported. The latter are synthesized by free radical polymerization of glycerin carbonated methacrylate with water-soluble comonomers. The hydrogel formation is studied at different pH and its influence on the gel time and storage modulus is investigated. Reinforced hydrogels are also constructed by adding CaCl2 to the formulation that in-situ generates CaCO3 particles. Thermoresponsive hydrogels are also prepared from new thermoresponsive cyclic carbonate bearing polymers. This work demonstrates that a multitude of non-isocyanate polyurethane hydrogels are easily accessible under mild conditions without any catalyst, opening new perspectives in the field.


Asunto(s)
Hidrogeles , Poliuretanos , Isocianatos , Polimerizacion , Agua
19.
Biomacromolecules ; 22(1): 183-189, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-32786525

RESUMEN

Mussel wet adhesion is known for its outstanding strength on a variety of surfaces. On the basis of the hypothesis that 3,4-dihydroxyphenylalanine, a catecholic amino acid, governs mussel adhesion, chemists have put much effort into the design of adhesive synthetic polymers containing catechols. However, the exceptional properties exhibited by the native proteins were hardly captured. The attempts to make those polymers stick to wet inorganic surfaces resulted in low adhesive forces. Here we synthesized poly(dopamine acrylamide) and measured the interaction forces with various inorganic surfaces using atomic force microscopy-based single-molecule force spectroscopy. We show that hydroxylation of the surface plays a pivotal role on the formation of strong bonds. We demonstrate that depending on the conditions, the whole range of interactions, from weak interactions to covalent bonds, can come into play.


Asunto(s)
Bivalvos , Adhesivos Tisulares , Adhesivos , Animales , Catecoles , Dihidroxifenilalanina , Polímeros , Propiedades de Superficie
20.
Macromol Rapid Commun ; 42(3): e2000538, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33244816

RESUMEN

The preparation of non-isocyanate polyurethanes (NIPUs) by polyaddition of (poly)cyclic carbonates to (poly)amines represents one of the most optimistic alternatives for replacing conventional polyurethanes prepared by the toxic isocyanate chemistry. However, the limited reactivity of conventional five membered cyclic carbonates even in the presence of catalysts restricts their industrial implementation. One way to mitigate this lack of reactivity is to combine with other chemistries to create hybrid-NIPUs with superior performance. In this article the combination of the adhesive promoter, dopamine, and the fast-curing promoter, an aminopropyl trimethoxysilane, is found to create a synergetic effect on the rheological and adhesive properties of NIPUs. After demonstrating the importance of adjusting soft/hard ratios to obtain lap-shear strength adhesion values up to 21 MPa on stainless steel, these values are retained when adding dopamine and silane compounds. Importantly, the adhesive properties of NIPU are preserved at high temperature (T > 200 °C) for optimal compositions. Finally, adhesion tests on various substrates (polyamide, high density polyethylene, poly(methyl methacrylate), oak wood, and aluminum) show best performances on polar substrates confirming the strong interactions of hydroxyl groups of NIPU and dopamine.


Asunto(s)
Isocianatos , Poliuretanos , Adhesivos , Dopamina , Resistencia al Corte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...