Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 143: 105011, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32653674

RESUMEN

Progressive accumulation of hyperphosphorylated tau is a hallmark of various neurodegenerative disorders including Alzheimer's disease. However, to date, the functional effects of tau pathology on brain network connectivity remain poorly understood. To directly interrogate the impact of tau pathology on functional brain connectivity, we conducted a longitudinal experiment in which we monitored a fibril-seeded hTau.P301L mouse model using correlative whole-brain microscopy and resting-state functional MRI. Despite a progressive aggravation of tau pathology across the brain, the major resting-state networks appeared unaffected up to 15 weeks after seeding. Targeted analyses also showed that the connectivity of regions with high levels of hyperphosphorylated tau was comparable to that observed in controls. In line with the ostensible retention of connectivity, no behavioural changes were detected between seeded and control hTau.P301L mice as determined by three different paradigms. Our data indicate that seeded tau pathology, with accumulation of tau aggregates throughout different regions of the brain, does not alter functional connectivity or behaviour in this mouse model. Additional correlative functional studies on different mouse models should help determine whether this is a generalizable trait of tauopathies.


Asunto(s)
Encéfalo/fisiopatología , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Agregación Patológica de Proteínas/fisiopatología , Proteínas tau/metabolismo , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Imagen por Resonancia Magnética , Ratones , Red Nerviosa/patología , Vías Nerviosas/patología , Agregación Patológica de Proteínas/patología
2.
Neuroimage ; 220: 117088, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32592851

RESUMEN

The anterior cingulate area (ACC) is an integral part of the prefrontal cortex in mice and supports cognitive functions, including attentional processes, motion planning and execution as well as remote memory, fear and pain. Previous anatomical and functional imaging studies demonstrated that the ACC is interconnected with numerous brain regions, such as motor and sensory cortices, amygdala and limbic areas, suggesting it serves as a hub in functional networks. However, the exact role of the ACC in regulating functional network activity and connectivity remains to be elucidated. Recently developed neuromodulatory techniques, such as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) allow for precise control of neuronal activity. In this study, we used an inhibitory kappa-opioid receptor DREADD (KORD) to temporally inhibit neuronal firing in the right ACC of mice and assessed functional network activity and connectivity using non-invasive functional magnetic resonance imaging (MRI). We demonstrated that KORD-induced inhibition of the right ACC induced blood oxygenation-level dependent (BOLD) signal decreases and increases in connected brain regions of both hemispheres. More specifically, altered neuronal activity could be observed in functional brain networks including connections with sensory cortex, thalamus, basolateral amygdala and ventral pallidum, areas involved in attention processes, working memory, fear behavior and reward respectively. Furthermore, these modulations in neuronal activity were associated with decreased intra- and interhemispheric functional connectivity. Our results consolidate the hub role of the mouse ACC in functional networks and further demonstrate that the combination of the DREADD technology and non-invasive functional imaging methods is a valuable tool for unraveling mechanisms of network function and dysfunction by reversible inactivation of selected targets.


Asunto(s)
Red en Modo Predeterminado/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Inhibición Neural/efectos de los fármacos , Receptores Opioides kappa , Animales , Mapeo Encefálico , Red en Modo Predeterminado/efectos de los fármacos , Giro del Cíngulo/efectos de los fármacos , Imagen por Resonancia Magnética , Ratones , Neuronas/efectos de los fármacos
3.
Neurobiol Dis ; 127: 398-409, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30878534

RESUMEN

We have exploited whole brain microscopy to map the progressive deposition of hyperphosphorylated tau in intact, cleared mouse brain. We found that the three-dimensional spreading pattern of hyperphosphorylated tau in the brain of an aging Tau.P301L mouse model did not resemble that observed in AD patients. Injection of synthetic or patient-derived tau fibrils in the CA1 region resulted in a more faithful spreading pattern. Atlas-guided volumetric analysis showed a connectome-dependent spreading from the injection site and also revealed hyperphosphorylated tau deposits beyond the direct anatomical connections. In fibril-injected brains, we also detected a persistent subpopulation of rod-like and swollen microglia. Furthermore, we showed that the hyperphosphorylated tau load could be reduced by intracranial co-administration of, and to a lesser extent, by repeated systemic dosing with an antibody targeting the microtubule-binding domain of tau. Thus, the combination of targeted seeding and in toto staging of tau pathology allowed assessing regional vulnerability in a comprehensive manner, and holds potential as a preclinical drug validation tool.


Asunto(s)
Encéfalo/metabolismo , Microglía/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones , Ratones Transgénicos , Microglía/patología , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Tauopatías/patología
4.
Front Cell Neurosci ; 11: 173, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28690500

RESUMEN

Functionally related neurons assemble into connected networks that process and transmit electrochemical information. To do this in a coordinated manner, the number and strength of synaptic connections is tightly regulated. Synapse function relies on the microtubule (MT) cytoskeleton, the dynamics of which are in turn controlled by a plethora of MT-associated proteins, including the MT-stabilizing protein Tau. Although mutations in the Tau-encoding MAPT gene underlie a set of neurodegenerative disorders, termed tauopathies, the exact contribution of MT dynamics and the perturbation thereof to neuronal network connectivity has not yet been scrutinized. Therefore, we investigated the impact of targeted perturbations of MT stability on morphological (e.g., neurite- and synapse density) and functional (e.g., synchronous calcium bursting) correlates of connectivity in networks of primary hippocampal neurons. We found that treatment with MT-stabilizing or -destabilizing compounds impaired morphofunctional connectivity in a reversible manner. We also discovered that overexpression of MAPT induced significant connectivity defects, which were accompanied by alterations in MT dynamics and increased resistance to pharmacological MT depolymerization. Overexpression of a MAPT variant harboring the P301L point mutation in the MT-binding domain did far less, directly linking neuronal connectivity with Tau's MT binding affinity. Our results show that MT stability is a vulnerable node in tauopathies and that its precise pharmacological tuning may positively affect neuronal network connectivity. However, a critical balance in MT turnover causes it to be a difficult therapeutic target with a narrow operating window.

5.
J Tissue Eng Regen Med ; 11(10): 2846-2852, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27320821

RESUMEN

Over the past two decades, several cell types with fibroblast-like morphology, including mesenchymal stem/stromal cells, but also other adult, embryonic and extra-embryonic fibroblast-like cells, have been brought forward in the search for cellular therapies to treat severe brain injuries and/or diseases. Although current views in regenerative medicine are highly focused on the immune modulating and regenerative properties of stromal cell transplantation in vivo, many open questions remain regarding their true mode of action. In this perspective, this study integrates insights gathered over the past 10 years to formulate a unifying model of the cellular events that accompany fibroblast-like cell grafting in the rodent brain. Cellular interactions are discussed step-by-step, starting from the day of implantation up to 10 days after transplantation. During the short period that precedes stable settlement of autologous/syngeneic stromal cell grafts, there is a complex interplay between hypoxia-mediated cell death of grafted cells, neutrophil invasion, microglia and macrophage recruitment, astrocyte activation and neo-angiogenesis within the stromal cell graft site. Consequently, it is speculated that regenerative processes following cell therapeutic intervention in the CNS are not only modulated by soluble factors secreted by grafted stromal cells (bystander hypothesis), but also by in vivo inflammatory processes following stromal cell grafting. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Inflamación/patología , Animales , Humanos , Modelos Biológicos , Células del Estroma/citología , Células del Estroma/inmunología , Células del Estroma/trasplante
6.
J Anat ; 230(3): 471-483, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27995631

RESUMEN

The intricate (micro)vascular architecture of the liver has not yet been fully unravelled. Although current models are often idealized simplifications of the complex anatomical reality, correct morphological information is instrumental for scientific and clinical purposes. Previously, both vascular corrosion casting (VCC) and immunohistochemistry (IHC) have been separately used to study the hepatic vasculature. Nevertheless, these techniques still face a number of challenges such as dual casting in VCC and limited imaging depths for IHC. We have optimized both techniques and combined their complementary strengths to develop a framework for multilevel reconstruction of the hepatic circulation in the rat. The VCC and micro-CT scanning protocol was improved by enabling dual casting, optimizing the contrast agent concentration, and adjusting the viscosity of the resin (PU4ii). IHC was improved with an optimized clearing technique (CUBIC) that extended the imaging depth for confocal microscopy more than five-fold. Using in-house developed software (DeLiver), the vascular network - in both VCC and IHC datasets - was automatically segmented and/or morphologically analysed. Our methodological framework allows 3D reconstruction and quantification of the hepatic circulation, ranging from the major blood vessels down to the intertwined and interconnected sinusoids. We believe that the presented framework will have value beyond studies of the liver, and will facilitate a better understanding of various parenchymal organs in general, in physiological and pathological circumstances.


Asunto(s)
Molde por Corrosión/métodos , Imagenología Tridimensional/métodos , Inmunohistoquímica/métodos , Hígado/irrigación sanguínea , Microtomografía por Rayos X/métodos , Animales , Masculino , Modelos Anatómicos , Modelos Animales , Ratas , Ratas Wistar
7.
Sci Rep ; 6: 36529, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27819315

RESUMEN

Impaired neuronal network function is a hallmark of neurodevelopmental and neurodegenerative disorders such as autism, schizophrenia, and Alzheimer's disease and is typically studied using genetically modified cellular and animal models. Weak predictive capacity and poor translational value of these models urge for better human derived in vitro models. The implementation of human induced pluripotent stem cells (hiPSCs) allows studying pathologies in differentiated disease-relevant and patient-derived neuronal cells. However, the differentiation process and growth conditions of hiPSC-derived neurons are non-trivial. In order to study neuronal network formation and (mal)function in a fully humanized system, we have established an in vitro co-culture model of hiPSC-derived cortical neurons and human primary astrocytes that recapitulates neuronal network synchronization and connectivity within three to four weeks after final plating. Live cell calcium imaging, electrophysiology and high content image analyses revealed an increased maturation of network functionality and synchronicity over time for co-cultures compared to neuronal monocultures. The cells express GABAergic and glutamatergic markers and respond to inhibitors of both neurotransmitter pathways in a functional assay. The combination of this co-culture model with quantitative imaging of network morphofunction is amenable to high throughput screening for lead discovery and drug optimization for neurological diseases.


Asunto(s)
Astrocitos/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Astrocitos/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo/métodos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Red Nerviosa/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo
8.
Bioinformatics ; 32(23): 3691-3693, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27503222

RESUMEN

Deep tissue imaging is increasingly used for non-destructive interrogation of intact organs and small model organisms. An intuitive approach to increase the imaging depth by almost a factor of 2 is to record a sample from two sides and fuse both image stacks. However, imperfect three-dimensional alignment of both stacks presents a computational challenge. We have developed a FIJI plugin, called BiDiFuse, which merges bi-directionally recorded image stacks via 3D rigid transformations. The method is broadly applicable, considering it is compatible with all optical sectioning microscopes and it does not rely on fiducial markers for image registration. AVAILABILITY AND IMPLEMENTATION: The method is freely available as a plugin for FIJI from https://github.com/JanDetrez/BiDiFuse/ CONTACT: winnok.devos@uantwerpen.be.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Microscopía , Programas Informáticos , Humanos
9.
Adv Anat Embryol Cell Biol ; 219: 123-48, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27207365

RESUMEN

Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Amongst the neuronal structures that show morphological plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular communication and the associated calcium bursting behaviour. In vitro cultured neuronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardization of both image acquisition and image analysis, it has become possible to extract statistically relevant readouts from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Microscopía Fluorescente/métodos , Red Nerviosa/ultraestructura , Animales , Encéfalo/fisiología , Encéfalo/ultraestructura , Calcio/metabolismo , Comunicación Celular/fisiología , Núcleo Celular/fisiología , Núcleo Celular/ultraestructura , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/instrumentación , Red Nerviosa/fisiología , Neuritas/fisiología , Neuritas/ultraestructura , Sinapsis/fisiología , Sinapsis/ultraestructura
10.
Alzheimers Dement ; 12(9): 964-976, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27107518

RESUMEN

INTRODUCTION: In Alzheimer's disease (AD), pathologic amyloid-beta (Aß) is synaptotoxic and impairs neuronal function at the microscale, influencing brain networks at the macroscale before Aß deposition. The latter can be detected noninvasively, in vivo, using resting-state functional MRI (rsfMRI), a technique used to assess brain functional connectivity (FC). METHODS: RsfMRI was performed longitudinally in TG2576 and PDAPP mice, starting before Aß deposition to determine the earliest FC changes. Additionally, the role of pathologic Aß on early FC alterations was investigated by treating TG2576 mice with the 3D6 anti-Aß-antibody. RESULTS: Both transgenic models showed hypersynchronized FC before Aß deposition and hyposynchronized FC at later stages. Early anti-Aß treatment in TG2576 mice prevented hypersynchronous FC and the associated synaptic impairments and excitatory/inhibitory disbalances. DISCUSSION: Hypersynchrony of FC may be used as a new noninvasive read out of early AD and can be recovered by anti-Aß treatment, encouraging preventive treatment strategies in familial AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Autoanticuerpos/farmacología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Circulación Cerebrovascular/fisiología , Sincronización Cortical/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Estudios Longitudinales , Imagen por Resonancia Magnética , Ratones Transgénicos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Fármacos Neuroprotectores/farmacología , Oxígeno/sangre , Placa Amiloide/diagnóstico por imagen , Placa Amiloide/fisiopatología , Placa Amiloide/prevención & control , Síntomas Prodrómicos , Descanso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...