Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(10): eadj3460, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446893

RESUMEN

We examine the characteristics and causes of southeast Australia's Tinderbox Drought (2017 to 2019) that preceded the Black Summer fire disaster. The Tinderbox Drought was characterized by cool season rainfall deficits of around -50% in three consecutive years, which was exceptionally unlikely in the context of natural variability alone. The precipitation deficits were initiated and sustained by an anomalous atmospheric circulation that diverted oceanic moisture away from the region, despite traditional indicators of drought risk in southeast Australia generally being in neutral states. Moisture deficits were intensified by unusually high temperatures, high vapor pressure deficits, and sustained reductions in terrestrial water availability. Anthropogenic forcing intensified the rainfall deficits of the Tinderbox Drought by around 18% with an interquartile range of 34.9 to -13.3% highlighting the considerable uncertainty in attributing droughts of this kind to human activity. Skillful predictability of this drought was possible by incorporating multiple remote and local predictors through machine learning, providing prospects for improving forecasting of droughts.


Asunto(s)
Cambio Climático , Sequías , Humanos , Australia , Frío , Aprendizaje Automático
3.
Nat Commun ; 14(1): 5928, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739937

RESUMEN

Massive river interlinking projects are proposed to offset observed increasing droughts and floods in India, the most populated country in the world. These projects involve water transfer from surplus to deficit river basins through reservoirs and canals without an in-depth understanding of the hydro-meteorological consequences. Here, we use causal delineation techniques, a coupled regional climate model, and multiple reanalysis datasets, and show that land-atmosphere feedbacks generate causal pathways between river basins in India. We further find that increased irrigation from the transferred water reduces mean rainfall in September by up to 12% in already water-stressed regions of India. We observe more drying in La Niña years compared to El Niño years. Reduced September precipitation can dry rivers post-monsoon, augmenting water stress across the country and rendering interlinking dysfunctional. Our findings highlight the need for model-guided impact assessment studies of large-scale hydrological projects across the globe.

4.
Nat Commun ; 13(1): 4275, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879272

RESUMEN

Hot extremes are anticipated to be more frequent and more intense under climate change, making the Indo-Gangetic Plain of India, with a 400 million population, vulnerable to heat stress. Recent studies suggest that irrigation has significant cooling and moistening effects over this region. While large-scale irrigation is prevalent in the Indo-Gangetic Plain during the two major cropping seasons, Kharif (Jun-Sep) and Rabi (Nov-Feb), hot extremes are reported in the pre-monsoon months (Apr-May) when irrigation activities are minimal. Here, using observed irrigation data and regional climate model simulations, we show that irrigation effects on heat stress during pre-monsoon are 4.9 times overestimated with model-simulated irrigation as prescribed in previous studies. We find that irrigation increases relative humidity by only 2.5%, indicating that irrigation is a non-crucial factor enhancing the moist heat stress. On the other hand, we detect causal effects of aerosol abundance on the daytime land surface temperature. Our study highlights the need to consider actual irrigation data in testing model-driven hypotheses related to the land-atmosphere feedback driven by human water management.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Atmósfera , Monitoreo del Ambiente , Respuesta al Choque Térmico , Humanos , India , Estaciones del Año
5.
Sci Rep ; 8(1): 3918, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500451

RESUMEN

While satellite data provides a strong robust signature of urban feedback on extreme precipitation; urbanization signal is often not so prominent with station level data. To investigate this, we select the case study of Mumbai, India and perform a high resolution (1 km) numerical study with Weather Research and Forecasting (WRF) model for eight extreme rainfall days during 2014-2015. The WRF model is coupled with two different urban schemes, the Single Layer Urban Canopy Model (WRF-SUCM), Multi-Layer Urban Canopy Model (WRF-MUCM). The differences between the WRF-MUCM and WRF-SUCM indicate the importance of the structure and characteristics of urban canopy on modifications in precipitation. The WRF-MUCM simulations resemble the observed distributed rainfall. WRF-MUCM also produces intensified rainfall as compared to the WRF-SUCM and WRF-NoUCM (without UCM). The intensification in rainfall is however prominent at few pockets of urban regions, that is seen in increased spatial variability. We find that the correlation of precipitation across stations within the city falls below statistical significance at a distance greater than 10 km. Urban signature on extreme precipitation will be reflected on station rainfall only when the stations are located inside the urban pockets having intensified precipitation, which needs to be considered in future analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...