Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Traffic ; 24(1): 4-19, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36398980

RESUMEN

The trans-Golgi Network (TGN) sorts molecular "addresses" and sends newly synthesized proteins to their destination via vesicular transport carriers. Despite the functional significance of packaging processes at the TGN, the sorting of soluble proteins remains poorly understood. Recent research has shown that the Golgi resident protein Cab45 is a significant regulator of secretory cargo sorting at the TGN. Cab45 oligomerizes upon transient Ca2+ influx, recruits soluble cargo molecules (clients), and packs them in sphingomyelin-rich transport carriers. However, the identity of client molecules packed into Cab45 vesicles is scarce. Therefore, we used a precise and highly efficient secretome analysis technology called hiSPECs. Intriguingly, we observed that Cab45 deficient cells manifest hypersecretion of lysosomal hydrolases. Specifically, Cab45 deficient cells secrete the unprocessed precursors of prosaposin (PSAP) and progranulin (PGRN). In addition, lysosomes in these cells show an aberrant perinuclear accumulation suggesting a new role of Cab45 in lysosomal positioning. This work uncovers a yet unknown function of Cab45 in regulating lysosomal function.


Asunto(s)
Proteínas , Saposinas , Humanos , Transporte Biológico , Lisosomas/metabolismo , Progranulinas/metabolismo , Transporte de Proteínas/fisiología , Proteínas/metabolismo , Saposinas/genética , Saposinas/metabolismo , Red trans-Golgi/metabolismo
2.
J Cell Biol ; 221(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34919127

RESUMEN

Progranulin is a lysosomal protein whose haploinsufficiency causes frontotemporal dementia, while homozygous loss of progranulin causes neuronal ceroid lipofuscinosis, a lysosomal storage disease. The sensitivity of cells to progranulin deficiency raises important questions about how cells coordinate intracellular trafficking of progranulin to ensure its efficient delivery to lysosomes. In this study, we discover that progranulin interactions with prosaposin, another lysosomal protein, first occur within the lumen of the endoplasmic reticulum (ER) and are required for the efficient ER exit of progranulin. Mechanistically, we identify an interaction between prosaposin and Surf4, a receptor that promotes loading of lumenal cargos into COPII-coated vesicles, and establish that Surf4 is critical for the efficient export of progranulin and prosaposin from the ER. Collectively, this work demonstrates that a network of interactions occurring early in the secretory pathway promote the ER exit and subsequent lysosomal delivery of newly translated progranulin and prosaposin.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Progranulinas/metabolismo , Saposinas/metabolismo , Secuencias de Aminoácidos , Animales , Células HeLa , Humanos , Ratones , Unión Proteica , Saposinas/química
3.
Sci Rep ; 8(1): 8938, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29895958

RESUMEN

We investigate the role of axonal transport in regulating neuronal mitochondrial density. We show that the density of mitochondria in the touch receptor neuron (TRN) of adult Caenorhabditis elegans is constant. Mitochondrial density and transport are controlled both by the Kinesin heavy chain and the Dynein-Dynactin complex. However, unlike in other models, the presence of mitochondria in C. elegans TRNs depends on a Kinesin light chain as well. Mutants in the three C. elegans miro genes do not alter mitochondrial density in the TRNs. Mutants in the Kinesin-1 associated proteins, UNC-16/JIP3 and UNC-76/FEZ1, show increased mitochondrial density and also have elevated levels of both the Kinesin Heavy and Light Chains in neurons. Genetic analyses suggest that, the increased mitochondrial density at the distal end of the neuronal process in unc-16 and unc-76 depends partly on Dynein. We observe a net anterograde bias in the ratio of anterograde to retrograde mitochondrial flux in the neuronal processes of unc-16 and unc-76, likely due to both increased Kinesin-1 and decreased Dynein in the neuronal processes. Our study shows that UNC-16 and UNC-76 indirectly limit mitochondrial density in the neuronal process by maintaining a balance in anterograde and retrograde mitochondrial axonal transport.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transporte Axonal , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Complejo Dinactina/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Mutación , Neuropéptidos/genética , Tacto/fisiología
4.
Proc Natl Acad Sci U S A ; 115(12): E2849-E2858, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29511098

RESUMEN

Frontotemporal dementia (FTD) is the most common neurodegenerative disorder in individuals under age 60 and has no treatment or cure. Because many cases of FTD result from GRN nonsense mutations, an animal model for this type of mutation is highly desirable for understanding pathogenesis and testing therapies. Here, we generated and characterized GrnR493X knockin mice, which model the most common human GRN mutation, a premature stop codon at arginine 493 (R493X). Homozygous GrnR493X mice have markedly reduced Grn mRNA levels, lack detectable progranulin protein, and phenocopy Grn knockout mice, with CNS microgliosis, cytoplasmic TDP-43 accumulation, reduced synaptic density, lipofuscinosis, hyperinflammatory macrophages, excessive grooming behavior, and reduced survival. Inhibition of nonsense-mediated mRNA decay (NMD) by genetic, pharmacological, or antisense oligonucleotide-based approaches showed that NMD contributes to the reduced mRNA levels in GrnR493X mice and cell lines and in fibroblasts from patients containing the GRNR493X mutation. Moreover, the expressed truncated R493X mutant protein was functional in several assays in progranulin-deficient cells. Together, these findings establish a murine model for in vivo testing of NMD inhibition or other therapies as potential approaches for treating progranulin deficiency caused by the R493X mutation.


Asunto(s)
Demencia Frontotemporal/etiología , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Demencia Frontotemporal/genética , Técnicas de Sustitución del Gen , Granulinas , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lisosomas/genética , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Oligonucleótidos Antisentido/farmacología , Progranulinas , ARN Mensajero
5.
J Neurosci ; 35(25): 9391-401, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26109662

RESUMEN

Maintenance of healthy mitochondria is crucial in cells, such as neurons, with high metabolic demands, and dysfunctional mitochondria are thought to be selectively degraded. Studies of chemically uncoupled cells have implicated PINK1 mitochondrial kinase, and Parkin E3 ubiquitin ligase in targeting depolarized mitochondria for degradation. However, the role of the PINK1/Parkin pathway in mitochondrial turnover is unclear in the nervous system under normal physiological conditions, and we understand little about the changes that occur in the mitochondrial life cycle when turnover is disrupted. Here, we evaluated the nature, location, and regulation of quality control in vivo using quantitative measurements of mitochondria in Drosophila nervous system, with deletion and overexpression of genes in the PINK1/Parkin pathway. We tested the hypotheses that impairment of mitochondrial quality control via suppression of PINK1 function should produce failures of turnover, accumulation of senescent mitochondria in the axon, defects in mitochondrial traffic, and a significant shift in the mitochondrial fission-fusion steady state. Although mitochondrial membrane potential was diminished by PINK1 deletion, we did not observe the predicted increases in mitochondrial density or length in axons. Loss of PINK1 also produced specific, directionally balanced defects in mitochondrial transport, without altering the balance between stationary and moving mitochondria. Somatic mitochondrial morphology was also compromised. These results strongly circumscribe the possible mechanisms of PINK1 action in the mitochondrial life cycle and also raise the possibility that mitochondrial turnover events that occur in cultured embryonic axons might be restricted to the cell body in vivo, in the intact nervous system.


Asunto(s)
Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila , Técnicas de Inactivación de Genes , Masculino , Potencial de la Membrana Mitocondrial , Microscopía Confocal
6.
Methods Enzymol ; 547: 131-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25416356

RESUMEN

The extreme geometry of neurons spreads the need for mitochondrial functions out irregularly across vast cellular distances. This makes the long-distance transport of mitochondria a critical feature of their function in neurons. Axonal transport of mitochondria has been studied profitably in a variety of in vitro systems, particularly embryonic neurons grown in culture. This has allowed not only detailed motility analysis via light microscopy but also the ability to challenge the system with pharmacological agents and transfection. It does, however, carry caveats about its relevance to events in cells of the intact nervous system. In recent years, it has become possible to observe, quantify, and analyze the behavior of mitochondria within axons of the nervous system of live organisms. Here, we describe how to prepare the Drosophila larva for direct observation of mitochondrial axonal transport and how to gather and analyze motility data from this preparation, using confocal microscopy. This system takes advantage of our ability in Drosophila to express mitochondrially targeted fluorescent proteins in specific neuronal cell types, which allows us to visualize their traffic with ease, and to distinguish anterograde from retrograde traffic. Drosophila genetics also allows the analysis of mutations, gene overexpression, and knockdowns that affect mitochondrial function, including models of neurodegenerative disease. In addition, this preparation allows the visualization of the distribution and morphology of mitochondria in cell bodies within the central nervous system and in synapses. It is also possible to analyze mitochondrial functions other than transport, such as inner membrane potential, using this preparation.


Asunto(s)
Transporte Axonal , Drosophila/metabolismo , Mitocondrias/metabolismo , Biología Molecular/métodos , Animales , Animales Modificados Genéticamente , Drosophila/citología , Drosophila/genética , Embrión no Mamífero , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Larva , Potencial de la Membrana Mitocondrial , Microscopía Confocal/métodos , Biología Molecular/instrumentación , Fotoblanqueo , Especies Reactivas de Oxígeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...