Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Environ Epigenet ; 10(1): dvae007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846065

RESUMEN

Ozone exposure induces a myriad of adverse cardiopulmonary outcomes in humans. Although advanced age and chronic disease are factors that may exacerbate a person's negative response to ozone exposure, there are no molecular biomarkers of susceptibility. Here, we examine whether epigenetic age acceleration (EAA) is associated with responsiveness to short-term ozone exposure. Using data from a crossover-controlled exposure study (n = 17), we examined whether EAA, as measured in lung epithelial cells collected 24 h after clean air exposure, modifies the observed effect of ozone on autonomic function, cardiac electrophysiology, hemostasis, pulmonary function, and inflammation. EAA was assessed in lung epithelial cells extracted from bronchoalveolar lavage fluids, using the pan-tissue aging clock. We used two analytic approaches: (i) median regression to estimate the association between EAA and the estimated risk difference for subclinical responses to ozone and (ii) a block randomization approach to estimate EAA's effect modification of subclinical responses. For both approaches, we calculated Fisher-exact P-values, allowing us to bypass large sample size assumptions. In median regression analyses, accelerated epigenetic age modified associations between ozone and heart rate-corrected QT interval (QTc) ([Formula: see text]= 0.12, P-value = 0.007) and between ozone and C-reactive protein ([Formula: see text] = -0.18, P = 0.069). During block randomization, the directions of association remained consistent for QTc and C-reactive protein; however, the P-values weakened. Block randomization also revealed that responsiveness of plasminogen activator inhibitor-1 (PAI-1) to ozone exposure was modified by accelerated epigenetic aging (PAI-1 difference between accelerated aging-defined block groups = -0.54, P-value = 0.039). In conclusion, EAA is a potential biomarker for individuals with increased susceptibility to ozone exposure even among young, healthy adults.

2.
Environ Res ; 214(Pt 1): 113768, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35780850

RESUMEN

Exposure to air pollution is a major risk factor for cardiovascular disease, disease risk factors, and mortality. Specifically, particulate matter (PM), and to some extent ozone, are contributors to these effects. In addition, exposures to these pollutants may be especially dangerous for susceptible populations. In this repeated-visit panel study, cardiovascular markers were collected from thirteen male participants with stable coronary artery disease. For 0-4 days prior to the health measurement collections, daily concentrations of fine PM (PM2.5) and ozone were obtained from local central monitoring stations located near the participant's homes. Then, single (PM2.5) and two-pollutant (PM2.5 and ozone) models were used to assess whether there were short-term changes in cardiovascular health markers. Per interquartile range increase in PM2.5, there were decrements in several heart rate variability metrics, including the standard deviation of the normal-to-normal intervals (lag 3, -5.8%, 95% confidence interval (CI) = -11.5, 0.3) and root-mean squared of successive differences (five day moving average, -8.1%, 95% CI = -15.0, -0.7). In addition, increases in PM2.5 were also associated with changes in P complexity (lag 1, 4.4%, 95% CI = 0.5, 8.5), QRS complexity (lag 1, 4.9%, 95% CI = 1.4, 8.5), total cholesterol (five day moving average, -2.1%, 95% CI = -4.1, -0.1), and high-density lipoprotein cholesterol (lag 2, -1.6%, 95% CI = -3.1, -0.1). Comparisons to our previously published work on ozone were conducted. We found that ozone affected inflammation and endothelial function, whereas PM2.5 influenced heart rate variability, repolarization, and lipids. All the health changes from these two studies were found at concentrations below the United States Environmental Protection Agency's National Ambient Air Quality Standards. Our results imply clear differences in the cardiovascular outcomes observed with exposure to the two ubiquitous air pollutants PM2.5 and ozone; this observation suggests different mechanisms of toxicity for these exposures.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedad de la Arteria Coronaria , Ozono , Biomarcadores , Colesterol , Exposición a Riesgos Ambientales , Frecuencia Cardíaca , Humanos , Lípidos , Masculino , Material Particulado , Estados Unidos
3.
Environ Int ; 167: 107407, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35850080

RESUMEN

BACKGROUND: Over one-third of the U.S. population is exposed to unsafe levels of ozone (O3). Dietary supplementation with fish oil (FO) or olive oil (OO) has shown protection against other air pollutants. This study evaluates potential cardiopulmonary benefits of FO or OO supplementation against acute O3 exposure in young healthy adults. METHODS: Forty-three participants (26 ± 4 years old; 47% female) were randomized to receive 3 g/day of FO, 3 g/day OO, or no supplementation (CTL) for 4 weeks prior to undergoing 2-hour exposures to filtered air and 300 ppb O3 with intermittent exercise on two consecutive days. Outcome measurements included spirometry, sputum neutrophil percentage, blood markers of inflammation, tissue injury and coagulation, vascular function, and heart rate variability. The effects of dietary supplementation and O3 on these outcomes were evaluated with linear mixed-effect models. RESULTS: Compared with filtered air, O3 exposure decreased FVC, FEV1, and FEV1/FVC immediately post exposure regardless of supplementation status. Relative to that in the CTL group, the lung function response to O3 exposure in the FO group was blunted, as evidenced by O3-induced decreases in FEV1 (Normalized CTL -0.40 ± 0.34 L, Normalized FO -0.21 ± 0.27 L) and FEV1/FVC (Normalized CTL -4.67 ± 5.0 %, Normalized FO -1.4 ± 3.18 %) values that were on average 48% and 70% smaller, respectively. Inflammatory responses measured in the sputum immediately post O3 exposure were not different among the three supplementation groups. Systolic blood pressure elevations 20-h post O3 exposure were blunted by OO supplementation. CONCLUSION: FO supplementation appears to offer protective effects against lung function decrements caused by acute O3 exposure in healthy adults.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/farmacología , Femenino , Aceites de Pescado/farmacología , Humanos , Pulmón , Masculino , Ozono/efectos adversos , Pruebas de Función Respiratoria
4.
Open Heart ; 9(1)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35750420

RESUMEN

OBJECTIVE: Short-term ambient fine particulate matter (PM2.5) is associated with adverse cardiovascular events including myocardial infarction (MI). However, few studies have examined associations between PM2.5 and subclinical cardiomyocyte damage outside of overt cardiovascular events. Here we evaluate the impact of daily PM2.5 on cardiac troponin I, a cardiomyocyte specific biomarker of cellular damage. METHODS: We conducted a retrospective cohort study of 2924 patients identified using electronic health records from the University of North Carolina Healthcare System who had a recorded MI between 2004 and 2016. Troponin I measurements were available from 2014 to 2016, and were required to be at least 1 week away from a clinically diagnosed MI. Daily ambient PM2.5 concentrations were estimated at 1 km resolution and assigned to patient residence. Associations between log-transformed troponin I and daily PM2.5 were evaluated using distributed lag linear mixed effects models adjusted for patient demographics, socioeconomic status and meteorology. RESULTS: A 10 µg/m3 elevation in PM2.5 3 days before troponin I measurement was associated with 0.06 ng/mL higher troponin I (95% CI=0.004 to 0.12). In stratified models, this association was strongest in patients that were men, white and living in less urban areas. Similar associations were observed when using 2-day rolling averages and were consistently strongest when using the average exposure over the 5 days prior to troponin I measurement. CONCLUSIONS: Daily elevations in PM2.5 were associated with damage to cardiomyocytes, outside of the occurrence of an MI. Poor air quality may cause persistent damage to the cardiovascular system leading to increased risk of cardiovascular disease and adverse cardiovascular events.


Asunto(s)
Contaminantes Atmosféricos , Infarto del Miocardio , Contaminantes Atmosféricos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Masculino , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/epidemiología , Miocitos Cardíacos , North Carolina/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis , Estudios Retrospectivos , Sobrevivientes , Troponina I
5.
Part Fibre Toxicol ; 19(1): 12, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35139860

RESUMEN

BACKGROUND: Exposure to air pollution is associated with elevated cardiovascular risk. Evidence shows that omega-3 polyunsaturated fatty acids (omega-3 PUFA) may attenuate the adverse cardiovascular effects of exposure to fine particulate matter (PM2.5). However, it is unclear whether habitual dietary intake of omega-3 PUFA protects against the cardiovascular effects of short-term exposure to low-level ambient air pollution in healthy participants. In the present study, sixty-two adults with low or high dietary omega-3 PUFA intake were enrolled. Blood lipids, markers of vascular inflammation, coagulation and fibrinolysis, and heart rate variability (HRV) and repolarization were repeatedly assessed in 5 sessions separated by at least 7 days. This study was carried out in the Research Triangle area of North Carolina, USA between October 2016 and September 2019. Daily PM2.5 and maximum 8-h ozone (O3) concentrations were obtained from nearby air quality monitoring stations. Linear mixed-effects models were used to assess the associations between air pollutant concentrations and cardiovascular responses stratified by the omega-3 intake levels. RESULTS: The average concentrations of ambient PM2.5 and O3 were well below the U.S. National Ambient Air Quality Standards during the study period. Significant associations between exposure to PM2.5 and changes in total cholesterol, von Willebrand factor (vWF), tissue plasminogen activator, D-dimer, and very-low frequency HRV were observed in the low omega-3 group, but not in the high group. Similarly, O3-associated adverse changes in cardiovascular biomarkers (total cholesterol, high-density lipoprotein, serum amyloid A, soluable intracellular adhesion molecule 1, and vWF) were mainly observed in the low omega-3 group. Lag-time-dependent biphasic changes were observed for some biomarkers. CONCLUSIONS: This study demonstrates associations between short-term exposure to PM2.5 and O3, at concentrations below regulatory standard, and subclinical cardiovascular responses, and that dietary omega-3 PUFA consumption may provide protection against such cardiovascular effects in healthy adults.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ácidos Grasos Omega-3 , Adulto , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Biomarcadores , Colesterol , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , Material Particulado/análisis , Material Particulado/toxicidad , Activador de Tejido Plasminógeno , Factor de von Willebrand
6.
Int J Environ Health Res ; 32(3): 565-578, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32615777

RESUMEN

Household air pollution is a leading risk factor for morbidity and premature mortality. Numerous cookstoves have been developed to reduce household air pollution, but it is unclear whether such cookstoves meaningfully improve health. In a controlled exposure study with a crossover design, we assessed the effect of pollution emitted from multiple cookstoves on acute differences in blood lipids and inflammatory biomarkers. Participants (n = 48) were assigned to treatment sequences of exposure to air pollution emitted from five cookstoves and a filtered-air control. Blood lipids and inflammatory biomarkers were measured before and 0, 3, and 24 hours after treatments. Many of the measured outcomes had inconsistent results. However, compared to control, intercellular adhesion molecule-1 was higher 3 hours after all treatments, and C-reactive protein and serum amyloid-A were higher 24 hours after the highest treatment. Our results suggest that short-term exposure to cookstove air pollution can increase inflammatory biomarkers within 24 hours.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Contaminación del Aire Interior/análisis , Biomarcadores , Culinaria , Humanos , Lípidos
7.
Am Heart J ; 243: 201-209, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610283

RESUMEN

BACKGROUND: Neighborhood-level socioeconomic status (SES) is associated with health outcomes, including cardiovascular disease and diabetes, but these associations are rarely studied across large, diverse populations. METHODS: We used Ward's Hierarchical clustering to define eight neighborhood clusters across North Carolina using 11 census-based indicators of SES, race, housing, and urbanicity and assigned 6992 cardiac catheterization patients at Duke University Hospital from 2001 to 2010 to clusters. We examined associations between clusters and coronary artery disease index > 23 (CAD), history of myocardial infarction, hypertension, and diabetes using logistic regression adjusted for age, race, sex, body mass index, region of North Carolina, distance to Duke University Hospital, and smoking status. RESULTS: Four clusters were urban, three rural, and one suburban higher-middle-SES (referent). We observed greater odds of myocardial infarction in all six clusters with lower or middle-SES. Odds of CAD were elevated in the rural cluster that was low-SES and plurality Black (OR 1.16, 95% CI 0.94-1.43) and in the rural cluster that was majority American Indian (OR 1.31, 95% CI 0.91-1.90). Odds of diabetes and hypertension were elevated in two urban and one rural low- and lower-middle SES clusters with large Black populations. CONCLUSIONS: We observed higher prevalence of cardiovascular disease and diabetes in neighborhoods that were predominantly rural, low-SES, and non-White, highlighting the importance of public health and healthcare system outreach into these communities to promote cardiometabolic health and prevent and manage hypertension, diabetes and coronary artery disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus , Hipertensión , Infarto del Miocardio , Cateterismo Cardíaco , Enfermedad de la Arteria Coronaria/epidemiología , Diabetes Mellitus/epidemiología , Humanos , Hipertensión/epidemiología , Infarto del Miocardio/epidemiología , Características de la Residencia , Clase Social , Factores Socioeconómicos
8.
Ann Am Thorac Soc ; 19(4): 583-593, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34797737

RESUMEN

Rationale: Exposure to air pollution is associated with adverse respiratory effects. Polyunsaturated omega 3 (n-3) fatty acids (FAs) appear to attenuate the health effects of air pollution. Objectives: This panel study evaluated whether n-3 FA intake and blood levels of polyunsaturated omega 6 (n-6) FAs can modulate the associations between respiratory effects and short-term exposure to ambient air pollution in healthy adults. Methods: Sixty-two healthy adults were enrolled into either high or low n-3 FA groups on the basis of n-3 FA intake and erythrocyte n-3 FA concentrations. Low and high n-6 FA groups were dichotomized on the basis of blood n-6 FA levels. Participants underwent three to five testing sessions separated by at least 7 days. At each session, the forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and plasma markers of inflammation (IL-6 [interleukin-6]) and oxidative stress (ox-LDL [oxidized low-density lipoprotein]) were measured. Associations between the ambient ozone and fine particulate matter (PM) (PM with an aerodynamic diameter ⩽2.5 µm [PM2.5]) levels and the lung function and blood markers were assessed by using mixed-effect models stratified by FA levels. Results: Average levels of ozone (40.8 ± 11.1 ppb) and PM2.5 (10.2 ± 4.1 µg/m3) were below national ambient air quality standards during the study period. FVC was positively associated with ozone at a lag of 0 days (lag0) in the high n-3 FA group, whereas the association was null in the low n-3 FA group (for an interquartile range increase in ozone of 1.8% [95% confidence interval (CI): 0.5% to 3.2%] vs. 0.0% [95% CI: -1.4% to 1.5%]); however, the association shifted to being negative at lag4 (-1.9% [95% CI: -3.2 to -0.5] vs. 0.2% [95% CI: -1.2% to 1.5%]) and lag5 (-1.2% [95% CI: -2.4% to 0.0%] vs. 0.9% [95% CI: -0.4% to 2.3%]). A similar pattern was observed in the low n-6 FA group compared with the high n-6 FA group (lag0: 1.7% [95% CI: 0.3% to 3.0%] vs. 0.5% [95% CI: -0.9% to 2.0%] and lag4: -1.4% [95% CI: -2.8% to 0.0%] vs. -0.5% [95% CI: -1.8% to 0.9%]). The associations between FEV1 and ozone and between FVC and PM2.5 also followed a similar pattern. Elevated ozone levels were associated with an immediate decrease in ox-LDL in the high n-3 FA group at lag0 (-12.3% [95% CI: -24.8% to 0.1%]), whereas there was no change in the low n-3 FA group (-7.5% [95% CI: -21.4% to 6.5%]) and there was a delayed increase in IL-6 in the high n-3 FA group compared with the low n-3 FA group (lag4: 66.9% [95% CI: 27.9% to 106.0%] vs. 8.9% [95% CI: -31.8% to 49.6%], lag5: 58.2% [95% CI: 22.4% to 94.1%] vs. -7.4% [95% CI: -48.8% to 34.0%], and lag6: 45.8% [95% CI: 8.7% to 82.9%] vs. -8.5% [95% CI: -49.7% to 32.6%]). Conclusions: We observed lag-dependent associations between short-term ambient air pollutants and lung function that were differentially modulated by n-3 and n-6 FAs, suggesting that n-3 and n-6 FAs counteract the respiratory response to low levels of ambient air pollution in healthy adults.Clinical trial registered with clinicaltrials.gov (NCT02921048).


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Ácidos Grasos Omega-6 , Humanos , Pulmón , Material Particulado/efectos adversos , Material Particulado/análisis
9.
Environ Health ; 20(1): 123, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34872587

RESUMEN

BACKGROUND: Short-term exposure to ambient nitrogen dioxide (NO2) is associated with adverse respiratory and cardiovascular outcomes. Supplementation of omega-3 polyunsaturated fatty acids (PUFA) has shown protection against exposure to fine particulate matter. This study aims to investigate whether habitual omega-3 PUFA intake differentially modify the associations between respiratory and cardiovascular responses and short-term exposure to ambient NO2. METHODS: Sixty-two healthy participants were enrolled into low or high omega-3 groups based on their habitual omega-3 PUFA intake. Each participant was repeatedly assessed for lung function, blood lipids, markers of coagulation and fibrinolysis, vascular function, and heart rate variability (HRV) in up to five sessions, each separated by at least 7 days. This study was carried out in the Research Triangle area of North Carolina, USA between October 2016 and September 2019. Daily ambient NO2 concentrations were obtained from an area air quality monitoring station on the day of outcome assessment (Lag0), 4 days prior (Lag1-4), as well as 5-day moving average (5dMA). The associations between short-term exposure to NO2 and the measured indices were evaluated using linear mixed-effects models stratified by omega-3 levels and adjusted by covariates including relative humidity and temperature. RESULTS: The average concentration of ambient NO2 during the study periods was 5.3±3.8 ppb which was below the National Ambient Air Quality Standards (NAAQS). In the high omega-3 group, an interquartile range (IQR) increase in short-term NO2 concentrations was significantly associated with increased lung function [e.g. 1.2% (95%CI: 0.2%, 2.2%) in FVC at lag1, 2.6% (95%CI: 0.4%, 4.8%) in FEV1 at 5dMA], decreased blood lipids [e.g. -2.6% (95%CI: -4.4%, -0.9%) in total cholesterol at lag2, -3.1% (95%CI: -6.1%, 0.0%) in HDL at 5dMA, and -3.1% (95%CI: -5.5%, -0.7%) in LDL at lag2], improved vascular function [e.g. 8.9% (95%CI: 0.6%, 17.2%) increase in FMD and 43.1% (95%CI: -79.8%, -6.3%) decrease in endothelin-1 at 5dMA], and changed HRV parameters [e.g. -7.2% (95%CI: -13.6%, -0.8%) in HFn and 13.4% (95%CI: 0.2%, 28.3%) in LF/HF ratio at lag3]. In the low omega-3 group, an IQR increase in ambient NO2 was associated with elevations in coagulation markers (von Willebrand Factor, D-dimer) and a decrease in HRV (very-low frequency); however, null associations were observed between short-term NO2 exposure and changes in lung function, blood lipids, and vascular function. CONCLUSIONS: The results in this study imply that dietary omega-3 PUFA consumption may offer respiratory and vascular benefits in response to short-term exposure of healthy adults to NO2 levels below the NAAQS. TRIAL REGISTRATION: ClinicalTrials.gov ( NCT02921048 ).


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ingestión de Alimentos , Exposición a Riesgos Ambientales/análisis , Ácidos Grasos Insaturados , Humanos , Pulmón , Dióxido de Nitrógeno/análisis , Material Particulado/efectos adversos , Material Particulado/análisis
10.
Environ Epidemiol ; 5(3): e157, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34131618

RESUMEN

Long-term air pollution exposure, notably fine particulate matter, is a global contributor to morbidity and mortality and a known risk factor for coronary artery disease (CAD) and myocardial infarctions (MI). Knowledge of impacts related to source-apportioned PM2.5 is limited. New modeling methods allow researchers to estimate source-specific long-term impacts on the prevalence of CAD and MI. The Catheterization Genetics (CATHGEN) cohort consists of patients who underwent a cardiac catheterization at Duke University Medical Center between 2002 and 2010. Severity of coronary blockage was determined by coronary angiography and converted into a binary indicator of clinical CAD. History of MI was extracted from medical records. Annual averages of source specific PM2.5 were estimated using an improved gas-constrained source apportionment model for North Carolina from 2002 to 2010. We tested six sources of PM2.5 mass for associations with CAD and MI using mixed effects multivariable logistic regression with a random intercept for county and multiple adjustments. PM2.5 fractions of ammonium bisulfate and ammonium nitrate were associated with increased prevalence of CAD (odds ratio [OR] 1.20; 95% CI = 1.11, 1.22 and OR 1.18; 95% CI = 1.05, 1.32, respectively). PM2.5 from ammonium bisulfate and ammonium nitrate were also associated with increased prevalence of MI (OR 1.20; 95% CI = 1.10, 1.29 and OR 1.35; 95% CI = 1.20, 1.53, respectively). Greater PM2.5 concentrations of ammonium bisulfate and ammonium nitrate are associated with greater MI and CAD prevalence. The association with bisulfate suggests aerosol acidity may play a role. Our findings suggest analyses of source specific PM2.5 mass can reveal novel associations.

11.
Environ Epigenet ; 7(1): dvab003, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859829

RESUMEN

Diesel exhaust (DE) is a major contributor to ambient air pollution around the world. It is a known human carcinogen that targets the respiratory system and increases risk for many diseases, but there is limited research on the effects of DE exposure on the epigenome of human bronchial epithelial cells. Understanding the epigenetic impact of this environmental pollutant can elucidate biological mechanisms involved in the pathogenesis of harmful DE-related health effects. To estimate the causal effect of short-term DE exposure on the bronchial epithelial epigenome, we conducted a controlled single-blinded randomized crossover human experiment of exposure to DE and used bronchoscopy and Illumina 450K arrays for data collection and analysis, respectively. Of the 13 participants, 11 (85%) were male and 2 (15%) were female, and 12 (92%) were White and one (8%) was Hispanic; the mean age was 26 years (SD = 3.8 years). Eighty CpGs were differentially methylated, achieving the minimum possible exact P-value of P = 2.44 × 10-4 (i.e. 2/213). In regional analyses, we found two differentially methylated regions (DMRs) annotated to the chromosome 5 open reading frame 63 genes (C5orf63; 7-CpGs) and unc-45 myosin chaperone A gene (UNC45A; 5-CpGs). Both DMRs showed increased DNA methylation after DE exposure. The average causal effects for the DMRs ranged from 1.5% to 6.0% increases in DNA methylation at individual CpGs. In conclusion, we found that short-term DE alters DNA methylation of genes in target bronchial epithelial cells, demonstrating epigenetic level effects of exposure that could be implicated in pulmonary pathologies.

12.
Environ Pollut ; 275: 116663, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33581627

RESUMEN

Exposure to fine particulate matter (PM2.5) has been associated with a higher risk for coronary events. Elevated circulating cardiac troponins (cTn) are suggestive of myocardial injury in both ischemic and non-ischemic conditions. However, little is known about the association between PM2.5 and cTn. In this study, we investigated short-term PM2.5 effects on cardiac troponin T (cTnT), as well as N-terminal-pro brain natriuretic peptide (NT-pro BNP) and inflammatory biomarkers among cardiac catheterized participants. We analyzed 7444 plasma cTnT measurements in 2732 participants who presented to Duke University Hospital with myocardial infarction symptoms between 2001 and 2012, partly along with measurements of NT-pro BNP and inflammatory biomarkers. Daily PM2.5 concentrations were predicted by a neural network-based hybrid model and were assigned to participants' residential addresses. We applied generalized estimating equations to assess associations of PM2.5 with biomarker levels and the risk of a positive cTnT test (cTnT > 0.1 ng/mL). The median plasma cTnT concentration at presentation was 0.05 ng/mL and the prevalence of a positive cTnT test was 35.4%. For an interquartile range (7.6 µg/m3) increase in PM2.5 on the previous day, cTnT concentrations increased by 7.7% (95% CI: 3.4-12.3) and the odds ratio of a positive cTnT test was 1.08 (1.01-1.16). Participants under 60 years (effect estimate: 15.2%; 95% CI: 7.4-23.5) or living in rural areas (12.3%; 95% CI: 4.8-20.3) were more susceptible. There was evidence for increases in fibrinogen and NT-pro BNP associated with elevated PM2.5 on the concurrent and previous two days. Our study suggests that acute PM2.5 exposure may elevate indicators of myocardial tissue damage. This finding substantiates the association of air pollution exposure with adverse cardiovascular events.


Asunto(s)
Infarto del Miocardio , Material Particulado , Biomarcadores , Estudios de Cohortes , Humanos , Miocardio , Troponina T
13.
Environ Int ; 146: 106254, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221594

RESUMEN

BACKGROUND: Exposure to household air pollution from solid fuel combustion for cooking and heating is an important risk factor for premature death and disability worldwide. Current evidence supports an association of ambient air pollution with cardiovascular disease but is limited for household air pollution and for cardiac function. Controlled exposure studies can complement evidence provided by field studies. OBJECTIVES: To investigate effects of short-term, controlled exposures to emissions from five cookstoves on measures of cardiac function. METHODS: Forty-eight healthy adults (46% female; 20-36 years) participated in six, 2-h exposures ('treatments'), including emissions from five cookstoves and a filtered-air control. Target fine particulate matter (PM2.5) exposure-concentrations per treatment were: control, 0 µg/m3; liquefied petroleum gas, 10 µg/m3; gasifier, 35 µg/m3; fan rocket, 100 µg/m3; rocket elbow, 250 µg/m3; and three stone fire, 500 µg/m3. Participants were treated in a set (pre-randomized) sequence as groups of 4 to minimize order bias and time-varying confounders. Heart rate variability (HRV) and cardiac repolarization metrics were calculated as 5-min means immediately and at 3 h following treatment, for analysis in linear mixed-effects models comparing cookstove to control. RESULTS: Short-term differences in SDNN (standard deviation of duration of all NN intervals) and VLF (very-low frequency power) existed for several cookstoves compared to control. While all cookstoves compared to control followed a similar trend for SDNN, the greatest effect was seen immediately following three stone fire (ß = -0.13 ms {%}; 95% confidence interval = -0.22, -0.03%), which reversed in direction at 3 h (0.03%; -0.06, 0.13%). VLF results were similar in direction and timing to SDNN; however, other HRV or cardiac repolarization results were not similar to those for SDNN. DISCUSSION: We observed some evidence of short-term, effects on HRV immediately following cookstove treatments compared to control. Our results suggest that cookstoves with lower PM2.5 emissions are potentially capable of affecting cardiac function, similar to stoves emitting higher PM2.5 emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Artículos Domésticos , Adulto , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Culinaria , Femenino , Humanos , Masculino , Material Particulado/análisis , Humo/efectos adversos , Voluntarios
14.
Aging (Albany NY) ; 12(23): 24141-24155, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33289704

RESUMEN

BACKGROUND: Accelerated epigenetic age has been proposed as a biomarker of increased aging, which may indicate disruptions in cellular and organ system homeostasis and thus contribute to sensitivity to environmental exposures. METHODS: Using 497 participants from the CATHGEN cohort, we evaluated whether accelerated epigenetic aging increases cardiovascular sensitivity to traffic-related air pollution (TRAP) exposure. We used residential proximity to major roadways and source apportioned air pollution models as measures of TRAP exposure, and chose peripheral arterial disease (PAD) and blood pressure as outcomes based on previous associations with TRAP. We used Horvath epigenetic age acceleration (AAD) and phenotypic age acceleration (PhenoAAD) as measures of age acceleration, and adjusted all models for chronological age, race, sex, smoking, and socioeconomic status. RESULTS: We observed significant interactions between TRAP and both AAD and PhenoAAD. Interactions indicated that increased epigenetic age acceleration elevated associations between proximity to roadways and PAD. Interactions were also observed between AAD and gasoline and diesel source apportioned PM2.5. CONCLUSION: Epigenetic age acceleration may be a biomarker of sensitivity to air pollution, particularly for TRAP in urban cohorts. This presents a novel means by which to understand sensitivity to air pollution and provides a molecular measure of environmental sensitivity.


Asunto(s)
Envejecimiento/genética , Presión Sanguínea/genética , Metilación de ADN , Exposición a Riesgos Ambientales/efectos adversos , Epigénesis Genética , Enfermedad Arterial Periférica/genética , Contaminación por Tráfico Vehicular/efectos adversos , Emisiones de Vehículos , Factores de Edad , Anciano , Monitoreo del Ambiente , Femenino , Marcadores Genéticos , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Persona de Mediana Edad , North Carolina , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/fisiopatología , Características de la Residencia , Medición de Riesgo , Salud Urbana
15.
Part Fibre Toxicol ; 17(1): 58, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33198760

RESUMEN

BACKGROUND: Fine particulate matter (PM2.5) related mild inflammation, altered autonomic control of cardiovascular function, and changes to cell function have been observed in controlled human exposure studies. METHODS: To measure the systemic and cardiopulmonary impacts of low-level PM exposure, we exposed 20 healthy, young volunteers to PM2.5, in the form of concentrated ambient particles (mean: 37.8 µg/m3, SD 6.5), and filtered air (mean: 2.1 µg/m3, SD 2.6). In this double-blind, crossover study the exposure order was randomized. During the 4 h exposure, volunteers (7 females and 13 males) underwent light intensity exercise to regulate ventilation rate. We measured pulmonary, cardiac, and hematologic end points before exposure, 1 h after exposure, and again 20 h after exposure. RESULTS: Low-level PM2.5 resulted in both pulmonary and extra-pulmonary changes characterized by alterations in systematic inflammation markers, cardiac repolarization, and decreased pulmonary function. A mean increase in PM2.5 concentration (37.8 µg/m3) significantly increased serum amyloid A (SAA), C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1), 1 h after exposure by 8.7, 9.1, 10.7, and 6.6%, respectively, relative to the filtered air control. SAA remained significantly elevated (34.6%) 20 h after PM2.5 exposure which was accompanied by a 5.7% decrease in percent neutrophils. Decreased pulmonary function was observed 1 h after exposure through a 0.8 and 1.2% decrease in forced expiratory volume in 1 s (FEV1) and FEV1/ forced vital capacity (FEV1/FVC) respectively. Additionally, sex specific changes were observed in repolarization outcomes following PM2.5 exposure. In males, P-wave and QRS complex were increased by 15.4 and 5.4% 1 h after exposure. CONCLUSIONS: This study is the first controlled human exposure study to demonstrate biological effects in response to exposure to concentrated ambient air PM2.5 particles at levels near the PM2.5 US NAAQS standard. CLINICAL TRIAL REGISTRATION INFORMATION: clinicaltrials.gov ; Identifier: NCT03232086 . The study was registered retrospectively on July 25, 2017, prior to final data collection on October 25, 2017 and data analysis.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Sistema Cardiovascular/efectos de los fármacos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Pulmón/efectos de los fármacos , Material Particulado/toxicidad , Adulto , Biomarcadores , Estudios Cruzados , Método Doble Ciego , Femenino , Volumen Espiratorio Forzado , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Función Respiratoria , Adulto Joven
16.
J Am Heart Assoc ; 9(6): e012517, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32172639

RESUMEN

Background Environmental health risks for individuals with heart failure (HF) have been inadequately studied, as these individuals are not well represented in traditional cohort studies. To address this we studied associations between long-term air pollution exposure and mortality in HF patients. Methods and Results The study population was a hospital-based cohort of individuals diagnosed with HF between July 1, 2004 and December 31, 2016 compiled using electronic health records. Individuals were followed from 1 year after initial diagnosis until death or the end of the observation period (December 31, 2016). We used Cox proportional hazards models to evaluate the association of annual average fine particulate matter (PM2.5) exposure at the time of initial HF diagnosis with all-cause mortality, adjusted for age, race, sex, distance to the nearest air pollution monitor, and socioeconomic status indicators. Among 23 302 HF patients, a 1 µg/m3 increase in annual average PM2.5 was associated with an elevated risk of all-cause mortality (hazard ratio 1.13; 95% CI, 1.10-1.15). As compared with people with exposures below the current national PM2.5 exposure standard (12 µg/m3), those with elevated exposures experienced 0.84 (95% CI, 0.73-0.95) years of life lost over a 5-year period, an observation that persisted even for those residing in areas with PM2.5 concentrations below current standards. Conclusions Residential exposure to elevated concentrations of PM2.5 is a significant mortality risk factor for HF patients. Elevated PM2.5 exposures result in substantial years of life lost even at concentrations below current national standards.


Asunto(s)
Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Insuficiencia Cardíaca/mortalidad , Material Particulado/efectos adversos , Anciano , Anciano de 80 o más Años , Data Warehousing , Registros Electrónicos de Salud , Femenino , Insuficiencia Cardíaca/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , North Carolina/epidemiología , Pronóstico , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo
17.
Environ Res ; 180: 108831, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648072

RESUMEN

Household air pollution emitted from solid-fuel cookstoves used for domestic cooking is a leading risk factor for morbidity and premature mortality globally. There have been attempts to design and distribute lower emission cookstoves, yet it is unclear if they meaningfully improve health. Using a crossover design, we assessed differences in central aortic hemodynamics and arterial stiffness following controlled exposures to air pollution emitted from five different cookstove technologies compared to a filtered air control. Forty-eight young, healthy participants were assigned to six 2-h controlled treatments of pollution from five different cookstoves and a filtered air control. Each treatment had a target concentration for fine particulate matter: filtered air control = 0 µg/m3, liquefied petroleum gas = 10 µg/m3, gasifier = 35 µg/m3, fan rocket = 100 µg/m3, rocket elbow = 250 µg/m3, three stone fire = 500 µg/m3. Pulse wave velocity (PWV), central augmentation index (AIx), and central pulse pressure (CPP) were measured before and at three time points after each treatment (0, 3, and 24 h). Linear mixed models were used to assess differences in the outcomes for each cookstove treatment compared to control. PWV and CPP were marginally higher 24 h after all cookstove treatments compared to control. For example, PWV was 0.15 m/s higher (95% confidence interval: -0.02, 0.31) and CPP was 0.6 mmHg higher (95% confidence interval: -0.8, 2.1) 24 h after the three stone fire treatment compared to control. The magnitude of the differences compared to control was similar across all cookstove treatments. PWV and CPP had no consistent trends at the other post-treatment time points (0 and 3 h). No consistent trends were observed for AIx at any post-treatment time point. Our findings suggest higher levels of PWV and CPP within 24 h after 2-h controlled treatments of pollution from five different cookstove technologies. The similar magnitude of the differences following each cookstove treatment compared to control may indicate that acute exposures from even the cleanest cookstove technologies can adversely impact these subclinical markers of cardiovascular health, although differences were small and may not be clinically meaningful.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Análisis de la Onda del Pulso , Humo , Adulto , Presión Sanguínea , Culinaria , Femenino , Humanos , Masculino , Humo/efectos adversos , Voluntarios , Adulto Joven
18.
PLoS One ; 14(4): e0207834, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31002714

RESUMEN

DNA methylation age (DNAm age) has become a widely utilized epigenetic biomarker for the aging process. The Horvath method for determining DNAm age is perhaps the most widely utilized and validated DNA methylation age assessment measure. Horvath DNAm age is calculated based on methylation measurements at 353 loci, present on Illumina's 450k and 27k DNA methylation microarrays. With increasing use of the more recently developed Illumina MethylationEPIC (850k) microarray, it is worth revisiting this aging measure to evaluate estimation differences due to array design. Of the requisite 353 loci, 17 are missing from the 850k microarray. Similarly, an alternate, 71 loci DNA methylation age assessment measure created by Hannum et al. is missing 6 requisite loci. Using 17 datasets with 27k, 450k, and/or 850k methylation data, we compared each sample's epigenetic age estimated from all 353 loci required by the Horvath DNAm age calculator, and using only the 336 loci available on the 850k array. In 450k/27k data, removing loci not on the 850k array resulted in underestimation of Horvath's DNAm age. Underestimation of Horvath DNAm age increased from ages 0 to ~20, remaining stable thereafter (mean deviation = -3.46 y, SD = 1.13 for individuals ≥20 years). Underestimation of Horvath's DNAm age by the reduced 450k/27k data was similar to the underestimation observed in the 850k data indicating it is driven by missing probes. In analogous examination of Hannum's DNAm age, the magnitude and direction of epigenetic age misestimation varied with chronological age. In conclusion, inter-array deviations in DNAm age estimations may be largely driven by missing probes between arrays, despite default probe imputation procedures. Though correlations and associations based on Horvath's DNAm age may be unaffected, researchers should exercise caution when interpreting results based on absolute differences in DNAm age or when mixing samples assayed on different arrays.


Asunto(s)
Envejecimiento , Metilación de ADN , Epigénesis Genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Islas de CpG , Femenino , Sitios Genéticos , Humanos , Lactante , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Polimorfismo de Nucleótido Simple , Adulto Joven
19.
Environ Epidemiol ; 3(1)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30882060

RESUMEN

Introduction: Exposure to PM2.5 air pollution and neighborhood-level sociodemographic characteristics are associated with cardiovascular disease and possibly diabetes. However, the joint effect of sociodemographics and PM2.5 on these outcomes is uncertain. Methods: We examined whether clusters of sociodemographic characteristics modified effects of long-term PM2.5 exposure on coronary artery disease (CAD), myocardial infarction (MI), hypertension, and diabetes. We used medical records data from 2192 cardiac catheterization patients residing in North Carolina and assigned to one of six previously-determined clusters. For each participant, we estimated annual PM2.5 exposure at their primary residence using a hybrid model with a 1 km2 resolution. We used logistic regression models adjusted for age, sex, body mass index, and smoking status, to assess cluster-specific associations with PM2.5 and to determine if there were interactions between cluster and PM2.5 on outcomes. Results: Compared to cluster 3 (OR 0.93, 95% CI 0.82-1.07; urban, low proportion of black individuals and high socioeconomic status), we observed greater associations between PM2.5 and hypertension in clusters 1 (OR 1.22, 95% CI 0.99-1.50, pint 0.03) and 2 (OR 1.64, 95% CI 1.16-2.32, pint 0.003), which were urban, high proportion of black individuals, and low socioeconomic status. PM2.5 was associated with MI (OR 1.29, 95% CI 1.16-1.42) but not diabetes, regardless of cluster and was associated with CAD in cluster 3 (OR 1.15, 95% CI 1.00, 1.31) and overall (OR 1.07, 95% CI 0.98, 1.17). Discussion: Areas of relative disadvantage have a stronger association between PM2.5 and hypertension compared to areas of relative advantage.

20.
Environ Int ; 122: 193-200, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30446244

RESUMEN

BACKGROUND: Fine particulate matter (PM2.5) exposure is associated with increased morbidity and mortality, particularly for cardiovascular disease. The association between long-term exposure to PM2.5 and measures of lipoprotein subfractions remains unclear. Therefore, we examined associations between long-term PM2.5 exposure and traditional and novel lipoprotein measures in a cardiac catheterization cohort in North Carolina. METHODS: This cross-sectional study included 6587 patients who had visited Duke University for a cardiac catheterization between 2001 and 2010 and resided in North Carolina. We used estimates of daily PM2.5 concentrations on a 1 km-grid based on satellite measurements. PM2.5 predictions were matched to the address of each patient and averaged for the year prior to catheterization date. Serum lipids included HDL, LDL, and triglyceride-rich particle, and apolipoprotein B concentrations (HDL-P, LDL-P, TRL-P, and apoB, respectively). Linear and quantile regression models were used to estimate change in lipoprotein levels with each µg/m3 increase in annual average PM2.5. Models were adjusted for age, sex, race/ethnicity, history of smoking, area-level education, urban/rural status, body mass index, and diabetes. RESULTS: For a 1-µg/m3 increment in PM2.5 exposure, we observed increases in total and small LDL-P, LDL-C, TRL-P, apoB, total cholesterol, and triglycerides. The percent change from the mean outcome level was 2.00% (95% CI: 1.38%, 2.64%) for total LDL-P and 2.25% (95% CI: 1.43%, 3.06%) for small LDL-P. CONCLUSION: Among this sample of cardiac catheterization patients residing in North Carolina, long-term PM2.5 exposure was associated with increases in several lipoprotein concentrations. This abstract does not necessarily reflect U.S. EPA policy.


Asunto(s)
Cateterismo Cardíaco/estadística & datos numéricos , Enfermedades Cardiovasculares/epidemiología , Exposición a Riesgos Ambientales , Lípidos/sangre , Material Particulado/análisis , Estudios Transversales , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , North Carolina/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...