Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurophotonics ; 11(3): 034310, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38881627

RESUMEN

Significance: Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale ("mesoscopic") imaging of different aspects of neuronal activity with spectrally compatible fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. Aim: We aim to develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. Approach: Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625-nm light-emitting diodes positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. Results: We demonstrate the performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake, head-fixed mice with a curved "crystal skull" window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRAB ACh 3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. Conclusions: Our widefield microscope design with a single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.

2.
Neurophotonics ; 11(1): 014415, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38545127

RESUMEN

The Frontiers in Neurophotonics Symposium is a biennial event that brings together neurobiologists and physicists/engineers who share interest in the development of leading-edge photonics-based approaches to understand and manipulate the nervous system, from its individual molecular components to complex networks in the intact brain. In this Community paper, we highlight several topics that have been featured at the symposium that took place in October 2022 in Québec City, Canada.

3.
Neurophotonics ; 11(1): 014401, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38550388

RESUMEN

The editorial presents the two-part Special Section on Frontiers in Neurophotonics.

4.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352456

RESUMEN

Cholinergic signaling is involved with a variety of brain functions including learning and memory, attention, and behavioral state modulation. The spatiotemporal characteristics of neocortical acetylcholine (ACh) release in response to sensory inputs are poorly understood, but a lack of intra-region topographic organization of cholinergic projections from the basal forebrain has suggested diffuse release patterns and volume transmission. Here, we use mesoscopic imaging of fluorescent ACh sensors to show that visual stimulation results in ACh release patterns that conform to a retinotopic map of visual space in the mouse primary visual cortex, suggesting new modes of functional cholinergic signaling in cortical circuits.x.

5.
IEEE Trans Med Imaging ; 43(2): 638-648, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37703138

RESUMEN

We introduce an ultrasound speckle decorrelation-based time-lagged functional ultrasound technique (tl-fUS) for the quantification of the relative changes in cerebral blood flow speed (rCBF [Formula: see text]), cerebral blood volume (rCBV) and cerebral blood flow (rCBF) during functional stimulations. Numerical simulations, phantom validations, and in vivo mouse brain experiments were performed to test the capability of tl-fUS to parse out and quantify the ratio change of these hemodynamic parameters. The blood volume change was found to be more prominent in arterioles compared to venules and the peak blood flow changes were around 2.5 times the peak blood volume change during brain activation, agreeing with previous observations in the literature. The tl-fUS shows the ability of distinguishing the relative changes of rCBFspeed, rCBV, and rCBF, which can inform specific physiological interpretations of the fUS measurements.


Asunto(s)
Neoplasias Encefálicas , Hemodinámica , Animales , Ratones , Volumen Sanguíneo , Ultrasonografía , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Imagen por Resonancia Magnética/métodos
6.
J Cereb Blood Flow Metab ; 44(2): 252-271, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37737093

RESUMEN

How transient hyperglycemia contributes to cerebro-vascular disease has been a challenge to study under controlled physiological conditions. We use amplified, ultrashort laser-pulses to physically disrupt brain-venule endothelium at targeted locations. This vessel disruption is performed in conjunction with transient hyperglycemia from a single injection of metabolically active D-glucose into healthy mice. The observed real-time responses to laser-induced disruption include rapid serum extravasation, platelet aggregation, and neutrophil recruitment. Thrombo-inflammation is pharmacologically ameliorated by a platelet inhibitor, by a scavenger of reactive oxygen species, and by a nitric oxide donor. As a control, vessel thrombo-inflammation is significantly reduced in mice injected with metabolically inert L-glucose. Venules in mice with diabetes show a similar response to laser-induced disruption and damage is reduced by restoration of normo-glycemia. Our approach provides a controlled method to probe synergies between transient metabolic and physical vascular perturbations and can reveal new aspects of brain pathophysiology.


Asunto(s)
Glucemia , Glucosa , Hiperglucemia , Animales , Ratones , Vénulas/metabolismo , Glucemia/metabolismo , Inflamación/metabolismo , Hiperglucemia/metabolismo , Plaquetas/metabolismo , Neutrófilos/metabolismo , Endotelio Vascular/metabolismo
7.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37986755

RESUMEN

SIGNIFICANCE: Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale (mesoscopic) imaging of neuronal activity with fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. AIM: Develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. APPROACH: Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625nm LEDs positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. RESULTS: We demonstrate performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake head-fixed mice with a curved crystal skull window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRABACh3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. CONCLUSIONS: Our widefield microscope design with single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.

9.
Neurophotonics ; 10(4): 040101, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38111906

RESUMEN

The editorial offers principles of everyday leadership, with hope for the new year.

10.
bioRxiv ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38106227

RESUMEN

High-resolution awake mouse fMRI remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radiofrequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Using a 14T scanner, high-resolution fMRI enabled brain-wide functional mapping of visual and vibrissa stimulation at 100×100×200µm resolution with a 2s per frame sampling rate. Besides activated ascending visual and vibrissa pathways, robust BOLD responses were detected in the anterior cingulate cortex upon visual stimulation and spread through the ventral retrosplenial area (VRA) with vibrissa air-puff stimulation, demonstrating higher-order sensory processing in association cortices of awake mice. In particular, the rapid hemodynamic responses in VRA upon vibrissa stimulation showed a strong correlation with the hippocampus, thalamus, and prefrontal cortical areas. Cross-correlation analysis with designated VRA responses revealed early positive BOLD signals at the contralateral barrel cortex (BC) occurring 2 seconds prior to the air-puff in awake mice with repetitive stimulation, which was not detectable with the randomized stimulation paradigm. This early BC activation indicated learned anticipation through the vibrissa system and association cortices in awake mice under continuous training of repetitive air-puff stimulation. This work establishes a high-resolution awake mouse fMRI platform, enabling brain-wide functional mapping of sensory signal processing in higher association cortical areas.

11.
Biomed Opt Express ; 14(9): 4790-4799, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37791271

RESUMEN

Laser speckle contrast imaging (LSCI) measures 2D maps of cerebral blood flow (CBF) in small animal brains such as mice. The contrast measured in LSCI also includes the static and slow-varying components that contain information about brain tissue dynamics. But these components are less studied as compared to the fast dynamics of CBF. In traditional wide-field LSCI, the contrast measured in the tissue is largely contaminated by neighboring blood vessels, which reduces the sensitivity to these static and slow components. Our goal is to enhance the sensitivity of the contrast to static and slow tissue dynamics and test models to quantify the characteristics of these components. To achieve this, we have developed a short-separation speckle contrast optical spectroscopy (ss-SCOS) system by implementing point illumination and point detection using multi-mode fiber arrays to enhance the static and slow components in speckle contrast measurements as compared to traditional wide-field LSCI (WF-LSCI). We observed larger fractions of the static and slow components when measured in the tissue using ss-SCOS than in traditional LSCI for the same animal and region of interest. We have also established models to obtain the fractions of the static and slow components and quantify the decorrelation time constants of the intensity auto-correlation function for both fast blood flow and slower tissue dynamics. Using ss-SCOS, we demonstrate the variations of fast and slow brain dynamics in animals before and post-stroke, as well as within an hour post-euthanasia. This technique establishes the foundation to measure brain tissue dynamics other than CBF, such as intracellular motility.

12.
Elife ; 122023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402178

RESUMEN

Aging is a major risk factor for cognitive impairment. Aerobic exercise benefits brain function and may promote cognitive health in older adults. However, underlying biological mechanisms across cerebral gray and white matter are poorly understood. Selective vulnerability of the white matter to small vessel disease and a link between white matter health and cognitive function suggests a potential role for responses in deep cerebral microcirculation. Here, we tested whether aerobic exercise modulates cerebral microcirculatory changes induced by aging. To this end, we carried out a comprehensive quantitative examination of changes in cerebral microvascular physiology in cortical gray and subcortical white matter in mice (3-6 vs. 19-21 months old), and asked whether and how exercise may rescue age-induced deficits. In the sedentary group, aging caused a more severe decline in cerebral microvascular perfusion and oxygenation in deep (infragranular) cortical layers and subcortical white matter compared with superficial (supragranular) cortical layers. Five months of voluntary aerobic exercise partly renormalized microvascular perfusion and oxygenation in aged mice in a depth-dependent manner, and brought these spatial distributions closer to those of young adult sedentary mice. These microcirculatory effects were accompanied by an improvement in cognitive function. Our work demonstrates the selective vulnerability of the deep cortex and subcortical white matter to aging-induced decline in microcirculation, as well as the responsiveness of these regions to aerobic exercise.


Asunto(s)
Disfunción Cognitiva , Sustancia Blanca , Animales , Ratones , Microcirculación , Envejecimiento/fisiología , Disfunción Cognitiva/prevención & control , Sustancia Blanca/fisiología , Cognición , Corteza Cerebral
13.
Nat Neurosci ; 26(6): 924-925, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37264157
14.
Nat Aging ; 3(2): 173-184, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37118115

RESUMEN

The microvascular inflow tract, comprising the penetrating arterioles, precapillary sphincters and first-order capillaries, is the bottleneck for brain blood flow and energy supply. Exactly how aging alters the structure and function of the microvascular inflow tract remains unclear. By in vivo four-dimensional two-photon imaging, we reveal an age-dependent decrease in vaso-responsivity accompanied by a decrease in vessel density close to the arterioles and loss of vascular mural cell processes, although the number of mural cell somas and their alpha smooth muscle actin density were preserved. The age-related reduction in vascular reactivity was mostly pronounced at precapillary sphincters, highlighting their crucial role in capillary blood flow regulation. Mathematical modeling revealed impaired pressure and flow control in aged mice during vasoconstriction. Interventions that preserve dynamics of cerebral blood vessels may ameliorate age-related decreases in blood flow and prevent brain frailty.


Asunto(s)
Capilares , Pericitos , Ratones , Animales , Pericitos/fisiología , Capilares/fisiología , Arteriolas/fisiología , Encéfalo/irrigación sanguínea , Hemodinámica
15.
Neuroimage Clin ; 38: 103377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36948140

RESUMEN

Functional neuroimaging, which measures hemodynamic responses to brain activity, has great potential for monitoring recovery in stroke patients and guiding rehabilitation during recovery. However, hemodynamic responses after stroke are almost always altered relative to responses in healthy subjects and it is still unclear if these alterations reflect the underlying brain physiology or if the alterations are purely due to vascular injury. In other words, we do not know the effect of stroke on neurovascular coupling and are therefore limited in our ability to use functional neuroimaging to accurately interpret stroke pathophysiology. To address this challenge, we simultaneously captured neural activity, through fluorescence calcium imaging, and hemodynamics, through intrinsic optical signal imaging, during longitudinal stroke recovery. Our data suggest that neurovascular coupling was preserved in the chronic phase of recovery (2 weeks and 4 weeks post-stoke) and resembled pre-stroke neurovascular coupling. This indicates that functional neuroimaging faithfully represents the underlying neural activity in chronic stroke. Further, neurovascular coupling in the sub-acute phase of stroke recovery was predictive of long-term behavioral outcomes. Stroke also resulted in increases in global brain oscillations, which showed distinct patterns between neural activity and hemodynamics. Increased neural excitability in the contralesional hemisphere was associated with increased contralesional intrahemispheric connectivity. Additionally, sub-acute increases in hemodynamic oscillations were associated with improved sensorimotor outcomes. Collectively, these results support the use of hemodynamic measures of brain activity post-stroke for predicting functional and behavioral outcomes.


Asunto(s)
Acoplamiento Neurovascular , Accidente Cerebrovascular , Humanos , Acoplamiento Neurovascular/fisiología , Accidente Cerebrovascular/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Hemodinámica/fisiología , Neuroimagen Funcional
16.
Neurophotonics ; 10(1): 010103, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36896093

RESUMEN

Neurophotonics editor-in-chief Anna Devor discusses neurophotonics and computational neuroscience in conversation with Prof. Gaute Einvoll.

17.
bioRxiv ; 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36824939

RESUMEN

Aging is a major risk factor for cognitive impairment. Aerobic exercise benefits brain function and may promote cognitive health in older adults. However, underlying biological mechanisms across cerebral gray and white matter are poorly understood. Selective vulnerability of the white matter to small vessel disease and a link between white matter health and cognitive function suggests a potential role for responses in deep cerebral microcirculation. Here, we tested whether aerobic exercise modulates cerebral microcirculatory changes induced by aging. To this end, we carried out a comprehensive quantitative examination of changes in cerebral microvascular physiology in cortical gray and subcortical white matter in mice (3-6 vs. 19-21 months old), and asked whether and how exercise may rescue age-induced deficits. In the sedentary group, aging caused a more severe decline in cerebral microvascular perfusion and oxygenation in deep (infragranular) cortical layers and subcortical white matter compared with superficial (supragranular) cortical layers. Five months of voluntary aerobic exercise partly renormalized microvascular perfusion and oxygenation in aged mice in a depth-dependent manner, and brought these spatial distributions closer to those of young adult sedentary mice. These microcirculatory effects were accompanied by an improvement in cognitive function. Our work demonstrates the selective vulnerability of the deep cortex and subcortical white matter to aging-induced decline in microcirculation, as well as the responsiveness of these regions to aerobic exercise.

18.
Nat Commun ; 13(1): 7945, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572698

RESUMEN

Human cortical organoids, three-dimensional neuronal cultures, are emerging as powerful tools to study brain development and dysfunction. However, whether organoids can functionally connect to a sensory network in vivo has yet to be demonstrated. Here, we combine transparent microelectrode arrays and two-photon imaging for longitudinal, multimodal monitoring of human cortical organoids transplanted into the retrosplenial cortex of adult mice. Two-photon imaging shows vascularization of the transplanted organoid. Visual stimuli evoke electrophysiological responses in the organoid, matching the responses from the surrounding cortex. Increases in multi-unit activity (MUA) and gamma power and phase locking of stimulus-evoked MUA with slow oscillations indicate functional integration between the organoid and the host brain. Immunostaining confirms the presence of human-mouse synapses. Implantation of transparent microelectrodes with organoids serves as a versatile in vivo platform for comprehensive evaluation of the development, maturation, and functional integration of human neuronal networks within the mouse brain.


Asunto(s)
Neuronas , Corteza Visual , Humanos , Animales , Ratones , Neuronas/fisiología , Encéfalo , Prótesis e Implantes , Organoides/trasplante , Corteza Visual/fisiología
19.
Adv Funct Mater ; 32(25)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-36381629

RESUMEN

The Utah array powers cutting-edge projects for restoration of neurological function, such as BrainGate, but the underlying electrode technology has itself advanced little in the last three decades. Here, advanced dual-side lithographic microfabrication processes is exploited to demonstrate a 1024-channel penetrating silicon microneedle array (SiMNA) that is scalable in its recording capabilities and cortical coverage and is suitable for clinical translation. The SiMNA is the first penetrating microneedle array with a flexible backing that affords compliancy to brain movements. In addition, the SiMNA is optically transparent permitting simultaneous optical and electrophysiological interrogation of neuronal activity. The SiMNA is used to demonstrate reliable recordings of spontaneous and evoked field potentials and of single unit activity in chronically implanted mice for up to 196 days in response to optogenetic and to whisker air-puff stimuli. Significantly, the 1024-channel SiMNA establishes detailed spatiotemporal mapping of broadband brain activity in rats. This novel scalable and biocompatible SiMNA with its multimodal capability and sensitivity to broadband brain activity will accelerate the progress in fundamental neurophysiological investigations and establishes a new milestone for penetrating and large area coverage microelectrode arrays for brain-machine interfaces.

20.
PLoS Biol ; 20(10): e3001440, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36301995

RESUMEN

The cerebral cortex is organized in cortical layers that differ in their cellular density, composition, and wiring. Cortical laminar architecture is also readily revealed by staining for cytochrome oxidase-the last enzyme in the respiratory electron transport chain located in the inner mitochondrial membrane. It has been hypothesized that a high-density band of cytochrome oxidase in cortical layer IV reflects higher oxygen consumption under baseline (unstimulated) conditions. Here, we tested the above hypothesis using direct measurements of the partial pressure of O2 (pO2) in cortical tissue by means of 2-photon phosphorescence lifetime microscopy (2PLM). We revisited our previously developed method for extraction of the cerebral metabolic rate of O2 (CMRO2) based on 2-photon pO2 measurements around diving arterioles and applied this method to estimate baseline CMRO2 in awake mice across cortical layers. To our surprise, our results revealed a decrease in baseline CMRO2 from layer I to layer IV. This decrease of CMRO2 with cortical depth was paralleled by an increase in tissue oxygenation. Higher baseline oxygenation and cytochrome density in layer IV may serve as an O2 reserve during surges of neuronal activity or certain metabolically active brain states rather than reflecting baseline energy needs. Our study provides to our knowledge the first quantification of microscopically resolved CMRO2 across cortical layers as a step towards better understanding of brain energy metabolism.


Asunto(s)
Complejo IV de Transporte de Electrones , Consumo de Oxígeno , Animales , Ratones , Complejo IV de Transporte de Electrones/metabolismo , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Corteza Cerebral/metabolismo , Encéfalo/fisiología , Circulación Cerebrovascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...