Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ESC Heart Fail ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616546

RESUMEN

AIMS: Hyperactivity of Ca2+/calmodulin-dependent protein kinase II (CaMKII) has emerged as a central cause of pathologic remodelling in heart failure. It has been suggested that CaMKII-induced hyperphosphorylation of the ryanodine receptor 2 (RyR2) and consequently increased diastolic Ca2+ leak from the sarcoplasmic reticulum (SR) is a crucial mechanism by which increased CaMKII activity leads to contractile dysfunction. We aim to evaluate the relevance of CaMKII-dependent RyR2 phosphorylation for CaMKII-induced heart failure development in vivo. METHODS AND RESULTS: We crossbred CaMKIIδC overexpressing [transgenic (TG)] mice with RyR2-S2814A knock-in mice that are resistant to CaMKII-dependent RyR2 phosphorylation. Ca2+-spark measurements on isolated ventricular myocytes confirmed the severe diastolic SR Ca2+ leak previously reported in CaMKIIδC TG [4.65 ± 0.73 mF/F0 vs. 1.88 ± 0.30 mF/F0 in wild type (WT)]. Crossing in the S2814A mutation completely prevented SR Ca2+-leak induction in the CaMKIIδC TG, both regarding Ca2+-spark size and frequency, demonstrating that the CaMKIIδC-induced SR Ca2+ leak entirely depends on the CaMKII-specific RyR2-S2814 phosphorylation. Yet, the RyR2-S2814A mutation did not affect the massive contractile dysfunction (ejection fraction = 12.17 ± 2.05% vs. 45.15 ± 3.46% in WT), cardiac hypertrophy (heart weight/tibia length = 24.84 ± 3.00 vs. 9.81 ± 0.50 mg/mm in WT), or severe premature mortality (median survival of 12 weeks) associated with cardiac CaMKIIδC overexpression. In the face of a prevented SR Ca2+ leak, the phosphorylation status of other critical CaMKII downstream targets that can drive heart failure, including transcriptional regulator histone deacetylase 4, as well as markers of pathological gene expression including Xirp2, Il6, and Col1a1, was equally increased in hearts from CaMKIIδC TG on a RyR WT and S2814A background. CONCLUSIONS: S2814 phosphoresistance of RyR2 prevents the CaMKII-dependent SR Ca2+ leak induction but does not prevent the cardiomyopathic phenotype caused by enhanced CaMKIIδC activity. Our data indicate that additional mechanisms-independent of SR Ca2+ leak-are critical for the maladaptive effects of chronically increased CaMKIIδC activity with respect to heart failure.

2.
Commun Biol ; 6(1): 161, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759717

RESUMEN

Fibrotic changes in the myocardium and cardiac arrhythmias represent fatal complications in systemic sclerosis (SSc), however the underlying mechanisms remain elusive. Mice overexpressing transcription factor Fosl-2 (Fosl-2tg) represent animal model of SSc. Fosl-2tg mice showed interstitial cardiac fibrosis, disorganized connexin-43/40 in intercalated discs and deregulated expression of genes controlling conduction system, and developed higher heart rate (HR), prolonged QT intervals, arrhythmias with prevalence of premature ventricular contractions, ventricular tachycardias, II-degree atrio-ventricular blocks and reduced HR variability. Following stimulation with isoproterenol Fosl-2tg mice showed impaired HR response. In contrast to Fosl-2tg, immunodeficient Rag2-/-Fosl-2tg mice were protected from enhanced myocardial fibrosis and ECG abnormalities. Transcriptomics analysis demonstrated that Fosl-2-overexpression was responsible for profibrotic signature of cardiac fibroblasts, whereas inflammatory component in Fosl-2tg mice activated their fibrotic and arrhythmogenic phenotype. In human cardiac fibroblasts FOSL-2-overexpression enhanced myofibroblast signature under proinflammatory or profibrotic stimuli. These results demonstrate that under immunofibrotic conditions transcription factor Fosl-2 exaggerates myocardial fibrosis, arrhythmias and aberrant response to stress.


Asunto(s)
Cardiomiopatías , Factor de Transcripción AP-1 , Animales , Humanos , Ratones , Arritmias Cardíacas/genética , Fibrosis , Ratones Transgénicos
4.
Circ Res ; 132(4): 400-414, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36715019

RESUMEN

BACKGROUND: Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. METHODS: To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+ spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+ handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. CONCLUSIONS: CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.


Asunto(s)
Miocitos Cardíacos , Hidrolasas Diéster Fosfóricas , Ratones , Animales , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Catecolaminas/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Arritmias Cardíacas/prevención & control , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Antiarrítmicos/metabolismo , GMP Cíclico/metabolismo , Péptido Natriurético Tipo-C/farmacología
5.
Front Physiol ; 13: 1056369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531184

RESUMEN

The cytochrome P450 reductase (POR) transfers electrons to all microsomal cytochrome P450 enzymes (CYP450) thereby driving their activity. In the vascular system, the POR/CYP450 system has been linked to the production of epoxyeicosatrienoic acids (EETs) but also to the generation of reactive oxygen species. In cardiac myocytes (CMs), EETs have been shown to modulate the cardiac function and have cardioprotective effects. The functional importance of the endothelial POR/CYP450 system in the heart is unclear and was studied here using endothelial cell-specific, inducible knockout mice of POR (ecPOR-/-). RNA sequencing of murine cardiac cells revealed a cell type-specific expression of different CYP450 homologues. Cardiac endothelial cells mainly expressed members of the CYP2 family which produces EETs, and of the CYP4 family that generates omega fatty acids. Tamoxifen-induced endothelial deletion of POR in mice led to cardiac remodelling under basal conditions, as shown by an increase in heart weight to body weight ratio and an increased CM area as compared to control animals. Endothelial deletion of POR was associated with a significant increase in endothelial genes linked to protein synthesis with no changes in genes of the oxidative stress response. CM of ecPOR-/- mice exhibited attenuated expression of genes linked to mitochondrial function and an increase in genes related to cardiac myocyte contractility. In a model of pressure overload (transverse aortic constriction, TAC with O-rings), ecPOR-/- mice exhibited an accelerated reduction in cardiac output (CO) and stroke volume (SV) as compared to control mice. These results suggest that loss of endothelial POR along with a reduction in EETs leads to an increase in vascular stiffness and loss in cardioprotection, resulting in cardiac remodelling.

6.
Am J Physiol Heart Circ Physiol ; 323(6): H1296-H1310, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367695

RESUMEN

RBM20 cardiomyopathy is an arrhythmogenic form of dilated cardiomyopathy caused by mutations in the splicing factor RBM20. A recent study found a more severe phenotype in male patients with RBM20 cardiomyopathy patients than in female patients. Here, we aim to determine sex differences in an animal model of RBM20 cardiomyopathy and investigate potential underlying mechanisms. In addition, we aim to determine sex and gender differences in clinical parameters in a novel RBM20 cardiomyopathy patient cohort. We characterized an Rbm20 knockout (KO) mouse model, and show that splicing of key RBM20 targets, cardiac function, and arrhythmia susceptibility do not differ between sexes. Next, we performed deep phenotyping of these mice, and show that male and female Rbm20-KO mice possess transcriptomic and phosphoproteomic differences. Hypothesizing that these differences may influence the heart's ability to compensate for stress, we exposed Rbm20-KO mice to acute catecholaminergic stimulation and again found no functional differences. We also replicate the lack of functional differences in a mouse model with the Rbm20-R636Q mutation. Lastly, we present a patient cohort of 33 RBM20 cardiomyopathy patients and show that these patients do not possess sex and gender differences in disease severity. Current mouse models of RBM20 cardiomyopathy show more pronounced changes in gene expression and phosphorylation of cardiac proteins in male mice, but no sex differences in cardiac morphology and function. Moreover, other than reported before, male RBM20 cardiomyopathy patients do not present with worse cardiac function in a patient cohort from Germany and the Netherlands.NEW & NOTEWORTHY Optimal management of the cardiac disease is increasingly personalized, partly because of differences in outcomes between sexes. RBM20 cardiomyopathy has been described to be more severe in male patients, and this carries the risk that male patients are more scrutinized in the clinic than female patients. Our findings do not support this observation and suggest that treatment should not differ between male and female RBM20 cardiomyopathy patients, but instead should focus on the underlying disease mechanism.


Asunto(s)
Cardiomiopatías , Proteínas de Unión al ARN , Ratones , Masculino , Femenino , Animales , Proteínas de Unión al ARN/genética , Arritmias Cardíacas/genética , Mutación , Ratones Noqueados , Índice de Severidad de la Enfermedad
7.
Basic Res Cardiol ; 117(1): 44, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068417

RESUMEN

Myocardial infarction (MI) with subsequent depression is associated with increased cardiac mortality. Impaired central mineralocorticoid (MR) and glucocorticoid receptor (GR) equilibrium has been suggested as a key mechanism in the pathogenesis of human depression. Here, we investigate if deficient central MR/GR signaling is causative for a poor outcome after MI in mice. Mice with an inducible forebrain-specific MR/GR knockout (MR/GR-KO) underwent baseline and follow-up echocardiography every 2 weeks after MI or sham operation. Behavioral testing at 4 weeks confirmed significant depressive-like behavior and, strikingly, a higher mortality after MI, while cardiac function and myocardial damage remained unaffected. Telemetry revealed cardiac autonomic imbalance with marked bradycardia and ventricular tachycardia (VT) upon MI in MR/GR-KO. Mechanistically, we found a higher responsiveness to atropine, pointing to impaired parasympathetic tone of 'depressive' mice after MI. Serum corticosterone levels were increased but-in line with the higher vagal tone-plasma and cardiac catecholamines were decreased. MR/GR deficiency in the forebrain led to significant depressive-like behavior and a higher mortality after MI. This was accompanied by increased vagal tone, depleted catecholaminergic compensatory capacity and VTs. Thus, limbic MR/GR disequilibrium may contribute to the impaired outcome of depressive patients after MI and possibly explain the lack of anti-depressive treatment benefit.


Asunto(s)
Depresión , Infarto del Miocardio , Animales , Humanos , Ratones , Infarto del Miocardio/patología , Miocardio/patología , Prosencéfalo/metabolismo , Receptores de Glucocorticoides/metabolismo
8.
Basic Res Cardiol ; 117(1): 15, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35286475

RESUMEN

Hyperactivity of the sympathetic nervous system is a major driver of cardiac remodeling, exerting its effects through both α-, and ß-adrenoceptors (α-, ß-ARs). As the relative contribution of subtype α1-AR to cardiac stress responses remains poorly investigated, we subjected mice to either subcutaneous perfusion with the ß-AR agonist isoprenaline (ISO, 30 mg/kg × day) or to a combination of ISO and the stable α1-AR agonist phenylephrine (ISO/PE, 30 mg/kg × day each). Telemetry analysis revealed similar hemodynamic responses under both ISO and ISO/PE treatment i.e., permanently increased heart rates and only transient decreases in mean blood pressure during the first 24 h. Echocardiography and single cell analysis after 1 week of exposure showed that ISO/PE-, but not ISO-treated animals established α1-AR-mediated inotropic responsiveness to acute adrenergic stimulation. Morphologically, additional PE perfusion limited concentric cardiomyocyte growth and enhanced cardiac collagen deposition during 7 days of treatment. Time-course analysis demonstrated a diverging development in transcriptional patterns at day 4 of treatment i.e., increased expression of selected marker genes Xirp2, Nppa, Tgfb1, Col1a1, Postn under chronic ISO/PE treatment which was either less pronounced or absent in the ISO group. Transcriptome analyses at day 4 via RNA sequencing demonstrated that additional PE treatment caused a marked upregulation of genes allocated to extracellular matrix and fiber organization along with a more pronounced downregulation of genes involved in metabolic processes, muscle adaptation and cardiac electrophysiology. Consistently, transcriptome changes under ISO/PE challenge more effectively recapitulated early transcriptional alterations in pressure overload-induced experimental heart failure and in human hypertrophic cardiomyopathy.


Asunto(s)
Corazón , Receptores Adrenérgicos alfa 1 , Animales , Isoproterenol/farmacología , Ratones , Fenilefrina/farmacología , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta
9.
EMBO Mol Med ; 14(4): e14753, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35179309

RESUMEN

Blood vessel formation is dependent on metabolic adaption in endothelial cells. Glucose and fatty acids are essential substrates for ATP and biomass production; however, the metabolism of other substrates remains poorly understood. Ketone bodies are important nutrients for cardiomyocytes during starvation or consumption of carbohydrate-restrictive diets. This raises the question whether cardiac endothelial cells would not only transport ketone bodies but also consume some of these to achieve their metabolic needs. Here, we report that cardiac endothelial cells are able to oxidize ketone bodies and that this enhances cell proliferation, migration, and vessel sprouting. Mechanistically, this requires succinyl-CoA:3-oxoacid-CoA transferase, a key enzyme of ketone body oxidation. Targeted metabolite profiling revealed that carbon from ketone bodies got incorporated into tricarboxylic acid cycle intermediates as well as other metabolites fueling biomass production. Elevation of ketone body levels by a high-fat, low-carbohydrate ketogenic diet transiently increased endothelial cell proliferation in mouse hearts. Notably, in a mouse model of heart hypertrophy, ketogenic diet prevented blood vessel rarefication. This suggests a potential beneficial role of dietary intervention in heart diseases.


Asunto(s)
Células Endoteliales , Cuerpos Cetónicos , Animales , Proliferación Celular , Células Endoteliales/metabolismo , Glucosa/metabolismo , Cuerpos Cetónicos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo
10.
PLoS One ; 16(6): e0248933, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34138844

RESUMEN

On the one hand, sustained ß-adrenergic stress is a hallmark of heart failure (HF) and exerts maladaptive cardiac remodelling. On the other hand, acute ß-adrenergic stimulation maintains cardiac function under physiological stress. However, it is still incompletely understood to what extent the adaptive component of ß-adrenergic signaling contributes to the maintenance of cardiac function during chronic ß-adrenergic stress. We developed an experimental catecholamine-based protocol to distinguish adaptive from maladaptive effects. Mice were for 28 days infused with 30 mg/kg body weight/day isoproterenol (ISO) by subcutaneously implanted osmotic minipumps ('ISO on'). In a second and third group, ISO infusion was stopped after 26 days and the mice were observed for additional two or seven days without further ISO infusion ('ISO off short', 'ISO off long'). In this setup, 'ISO on' led to cardiac hypertrophy and slightly improved cardiac contractility. In stark contrast, 'ISO off' mice displayed progressive worsening of left ventricular ejection fraction that dropped down below 40%. While fetal and pathological gene expression (increase in Nppa, decrease in Myh6/Myh7 ratios, increase in Xirp2) was not induced in 'ISO on', it was activated in 'ISO off' mice. After ISO withdrawal, phosphorylation of phospholamban (PLN) at the protein kinase A (PKA) phosphorylation site Ser-16 dropped down to 20% as compared to only 50% at the Ca2+/Calmodulin-dependent kinase II (CaMKII) phosphorylation site Thr-17 in 'ISO off' mice. PKA-dependent cardioprotective production of the N-terminal proteolytic product of histone deacetylase 4 (HDAC4-NT) was reduced in 'ISO off' as compared to 'ISO on'. Taken together, these data indicate that chronic ISO infusion induces besides maladaptive remodelling also adaptive PKA signalling to maintain cardiac function. The use of the 'ISO on/off' model will further enable the separation of the underlying adaptive from maladaptive components of ß-adrenergic signalling and may help to better define and test therapeutic targets downstream of ß-adrenergic receptors.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Receptores Adrenérgicos beta/metabolismo , Remodelación Ventricular/efectos de los fármacos , Animales , Isoproterenol/farmacología , Masculino , Ratones , Modelos Biológicos
12.
Cardiovasc Res ; 117(8): 1908-1922, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32777030

RESUMEN

AIMS: Arrhythmias and sudden cardiac death (SCD) occur commonly in patients with heart failure. We found T-box 5 (TBX5) dysregulated in ventricular myocardium from heart failure patients and thus we hypothesized that TBX5 reduction contributes to arrhythmia development in these patients. To understand the underlying mechanisms, we aimed to reveal the ventricular TBX5-dependent transcriptional network and further test the therapeutic potential of TBX5 level normalization in mice with documented arrhythmias. METHODS AND RESULTS: We used a mouse model of TBX5 conditional deletion in ventricular cardiomyocytes. Ventricular (v) TBX5 loss in mice resulted in mild cardiac dysfunction and arrhythmias and was associated with a high mortality rate (60%) due to SCD. Upon angiotensin stimulation, vTbx5KO mice showed exacerbated cardiac remodelling and dysfunction suggesting a cardioprotective role of TBX5. RNA-sequencing of a ventricular-specific TBX5KO mouse and TBX5 chromatin immunoprecipitation was used to dissect TBX5 transcriptional network in cardiac ventricular tissue. Overall, we identified 47 transcripts expressed under the control of TBX5, which may have contributed to the fatal arrhythmias in vTbx5KO mice. These included transcripts encoding for proteins implicated in cardiac conduction and contraction (Gja1, Kcnj5, Kcng2, Cacna1g, Chrm2), in cytoskeleton organization (Fstl4, Pdlim4, Emilin2, Cmya5), and cardiac protection upon stress (Fhl2, Gpr22, Fgf16). Interestingly, after TBX5 loss and arrhythmia development in vTbx5KO mice, TBX5 protein-level normalization by systemic adeno-associated-virus (AAV) 9 application, re-established TBX5-dependent transcriptome. Consequently, cardiac dysfunction was ameliorated and the propensity of arrhythmia occurrence was reduced. CONCLUSIONS: This study uncovers a novel cardioprotective role of TBX5 in the adult heart and provides preclinical evidence for the therapeutic value of TBX5 protein normalization in the control of arrhythmia.


Asunto(s)
Arritmias Cardíacas/prevención & control , Muerte Súbita Cardíaca/prevención & control , Ventrículos Cardíacos/metabolismo , Hipertrofia Ventricular Izquierda/terapia , Proteínas de Dominio T Box/metabolismo , Disfunción Ventricular Izquierda/terapia , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Secuenciación de Inmunoprecipitación de Cromatina , Muerte Súbita Cardíaca/etiología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Terapia Genética , Frecuencia Cardíaca , Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Preparación de Corazón Aislado , Ratones Endogámicos C57BL , Ratones Noqueados , RNA-Seq , Proteínas de Dominio T Box/genética , Transcripción Genética , Transcriptoma , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda , Remodelación Ventricular
13.
Diabetes ; 70(2): 616-626, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33239449

RESUMEN

Type 2 diabetes has become a pandemic and leads to late diabetic complications of organs, including kidney and eye. Lowering hyperglycemia is the typical therapeutic goal in clinical medicine. However, hyperglycemia may only be a symptom of diabetes but not the sole cause of late diabetic complications; instead, other diabetes-related alterations could be causative. Here, we studied the role of CaM kinase II-δ (CaMKIIδ), which is known to be activated through diabetic metabolism. CaMKIIδ is expressed ubiquitously and might therefore affect several different organ systems. We crossed diabetic leptin receptor-mutant mice to mice lacking CaMKIIδ globally. Remarkably, CaMKIIδ-deficient diabetic mice did not develop hyperglycemia. As potential underlying mechanisms, we provide evidence for improved insulin sensing with increased glucose transport into skeletal muscle and also reduced hepatic glucose production. Despite normoglycemia, CaMKIIδ-deficient diabetic mice developed the full picture of diabetic nephropathy, but diabetic retinopathy was prevented. We also unmasked a retina-specific gene expression signature that might contribute to CaMKII-dependent retinal diabetic complications. These data challenge the clinical concept of normalizing hyperglycemia in diabetes as a causative treatment strategy for late diabetic complications and call for a more detailed analysis of intracellular metabolic signals in different diabetic organs.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/metabolismo , Retinopatía Diabética/metabolismo , Hiperglucemia/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Diabetes Mellitus Tipo 2/genética , Nefropatías Diabéticas/genética , Retinopatía Diabética/genética , Expresión Génica , Hiperglucemia/genética , Ratones , Ratones Noqueados , Receptores de Leptina/genética , Receptores de Leptina/metabolismo
14.
Sci Rep ; 10(1): 15319, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948795

RESUMEN

Nitro-fatty acids are electrophilic anti-inflammatory mediators which are generated during myocardial ischemic injury. Whether these species exert anti-arrhythmic effects in the acute phase of myocardial ischemia has not been investigated so far. Herein, we demonstrate that pretreatment of mice with 9- and 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO2-OA) significantly reduced the susceptibility to develop acute ventricular tachycardia (VT). Accordingly, epicardial mapping revealed a markedly enhanced homogeneity in ventricular conduction. NO2-OA treatment of isolated cardiomyocytes lowered the number of spontaneous contractions upon adrenergic isoproterenol stimulation and nearly abolished ryanodine receptor type 2 (RyR2)-dependent sarcoplasmic Ca2+ leak. NO2-OA also significantly reduced RyR2-phosphorylation by inhibition of increased CaMKII activity. Thus, NO2-OA might be a novel pharmacological option for the prevention of VT development.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Nitrocompuestos/farmacología , Ácidos Oléicos/farmacología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Catecolaminas/farmacología , Suplementos Dietéticos , Homeostasis/efectos de los fármacos , Isoproterenol/farmacología , Masculino , Ratones Endogámicos , Isquemia Miocárdica/complicaciones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/etiología , Taquicardia Ventricular/prevención & control
15.
J Physiol ; 598(7): 1361-1376, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30770570

RESUMEN

KEY POINTS: Mitochondrial Ca2+ uptake stimulates the Krebs cycle to regenerate the reduced forms of pyridine nucleotides (NADH, NADPH and FADH2 ) required for ATP production and reactive oxygen species (ROS) elimination. Ca2+ /calmodulin-dependent protein kinase II (CaMKII) has been proposed to regulate mitochondrial Ca2+ uptake via mitochondrial Ca2+ uniporter phosphorylation. We used two mouse models with either global deletion of CaMKIIδ (CaMKIIδ knockout) or cardiomyocyte-specific deletion of CaMKIIδ and γ (CaMKIIδ/γ double knockout) to interrogate whether CaMKII controls mitochondrial Ca2+ uptake in isolated mitochondria and during ß-adrenergic stimulation in cardiac myocytes. CaMKIIδ/γ did not control Ca2+ uptake, respiration or ROS emission in isolated cardiac mitochondria, nor in isolated cardiac myocytes, during ß-adrenergic stimulation and pacing. The results of the present study do not support a relevant role of CaMKII for mitochondrial Ca2+ uptake in cardiac myocytes under physiological conditions. ABSTRACT: Mitochondria are the main source of ATP and reactive oxygen species (ROS) in cardiac myocytes. Furthermore, activation of the mitochondrial permeability transition pore (mPTP) induces programmed cell death. These processes are essentially controlled by Ca2+ , which is taken up into mitochondria via the mitochondrial Ca2+ uniporter (MCU). It was recently proposed that Ca2+ /calmodulin-dependent protein kinase II (CaMKII) regulates Ca2+ uptake by interacting with the MCU, thereby affecting mPTP activation and programmed cell death. In the present study, we investigated the role of CaMKII under physiological conditions in which mitochondrial Ca2+ uptake matches energy supply to the demand of cardiac myocytes. Accordingly, we measured mitochondrial Ca2+ uptake in isolated mitochondria and cardiac myocytes harvested from cardiomyocyte-specific CaMKII δ and γ double knockout (KO) (CaMKIIδ/γ DKO) and global CaMKIIδ KO mice. To simulate a physiological workload increase, cardiac myocytes were subjected to ß-adrenergic stimulation (by isoproterenol superfusion) and an increase in stimulation frequency (from 0.5 to 5 Hz). No differences in mitochondrial Ca2+ accumulation were detected in isolated mitochondria or cardiac myocytes from both CaMKII KO models compared to wild-type littermates. Mitochondrial redox state and ROS production were unchanged in CaMKIIδ/γ DKO, whereas we observed a mild oxidation of mitochondrial redox state and an increase in H2 O2 emission from CaMKIIδ KO cardiac myocytes exposed to an increase in workload. In conclusion, the results obtained in the present study do not support the regulation of mitochondrial Ca2+ uptake via the MCU or mPTP activation by CaMKII in cardiac myocytes under physiological conditions.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Miocitos Cardíacos , Animales , Calcio , Ratones , Especies Reactivas de Oxígeno , Retículo Sarcoplasmático
16.
Nat Metab ; 1(11): 1157-1167, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31742248

RESUMEN

Catecholamines stimulate the first step of lipolysis by PKA-dependent release of the lipid droplet-associated protein ABHD5 from perilipin to co-activate the lipase ATGL. Here, we unmask a yet unrecognized proteolytic and cardioprotective function of ABHD5. ABHD5 acts in vivo and in vitro as a serine protease cleaving HDAC4. Through the production of an N-terminal polypeptide of HDAC4 (HDAC4-NT), ABHD5 inhibits MEF2-dependent gene expression and thereby controls glucose handling. ABHD5-deficiency leads to neutral lipid storage disease in mice. Cardiac-specific gene therapy of HDAC4-NT does not protect from intra-cardiomyocyte lipid accumulation but strikingly from heart failure, thereby challenging the concept of lipotoxicity-induced heart failure. ABHD5 levels are reduced in failing human hearts and murine transgenic ABHD5 expression protects from pressure-overload induced heart failure. These findings represent a conceptual advance by connecting lipid with glucose metabolism through HDAC4 proteolysis and enable new translational approaches to treat cardiometabolic disease.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Histona Desacetilasas/metabolismo , Gotas Lipídicas , Proteínas Represoras/metabolismo , Células 3T3-L1 , Animales , Insuficiencia Cardíaca/prevención & control , Humanos , Ratones , Unión Proteica , Proteolisis , Serina Proteasas/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(44): 22282-22287, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31619570

RESUMEN

Sympathetic activation of ß-adrenoreceptors (ß-AR) represents a hallmark in the development of heart failure (HF). However, little is known about the underlying mechanisms of gene regulation. In human ventricular myocardium from patients with end-stage HF, we found high levels of phosphorylated histone 3 at serine-28 (H3S28p). H3S28p was increased by inhibition of the catecholamine-sensitive protein phosphatase 1 and decreased by ß-blocker pretreatment. By a series of in vitro and in vivo experiments, we show that the ß-AR downstream protein kinase CaM kinase II (CaMKII) directly binds and phosphorylates H3S28. Whereas, in CaMKII-deficient myocytes, acute catecholaminergic stimulation resulted in some degree of H3S28p, sustained catecholaminergic stimulation almost entirely failed to induce H3S28p. Genome-wide analysis of CaMKII-mediated H3S28p in response to chronic ß-AR stress by chromatin immunoprecipitation followed by massive genomic sequencing led to the identification of CaMKII-dependent H3S28p target genes. Forty percent of differentially H3S28p-enriched genomic regions were associated with differential, mostly increased expression of the nearest genes, pointing to CaMKII-dependent H3S28p as an activating histone mark. Remarkably, the adult hemoglobin genes showed an H3S28p enrichment close to their transcriptional start or end sites, which was associated with increased messenger RNA and protein expression. In summary, we demonstrate that chronic ß-AR activation leads to CaMKII-mediated H3S28p in cardiomyocytes. Thus, H3S28p-dependent changes may play an unexpected role for cardiac hemoglobin regulation in the context of sympathetic activation. These data also imply that CaMKII may be a yet unrecognized stress-responsive regulator of hematopoesis.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca/metabolismo , Hemoglobinas/genética , Código de Histonas , Histonas/metabolismo , Miocardio/metabolismo , Sistema Nervioso Simpático/fisiología , Antagonistas Adrenérgicos beta/farmacología , Adulto , Animales , Catecolaminas/farmacología , Células Cultivadas , Femenino , Insuficiencia Cardíaca/genética , Hemoglobinas/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fosforilación , Ratas , Sistema Nervioso Simpático/efectos de los fármacos
18.
Circulation ; 140(7): 580-594, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31195810

RESUMEN

BACKGROUND: Worldwide, diabetes mellitus and heart failure represent frequent comorbidities with high socioeconomic impact and steadily growing incidence, calling for a better understanding of how diabetic metabolism promotes cardiac dysfunction. Paradoxically, some glucose-lowering drugs have been shown to worsen heart failure, raising the question of how glucose mediates protective versus detrimental cardiac signaling. Here, we identified a histone deacetylase 4 (HDAC4) subdomain as a molecular checkpoint of adaptive and maladaptive signaling in the diabetic heart. METHODS: A conditional HDAC4 allele was used to delete HDAC4 specifically in cardiomyocytes (HDAC4-knockout). Mice were subjected to diabetes mellitus either by streptozotocin injections (type 1 diabetes mellitus model) or by crossing into mice carrying a leptin receptor mutation (db/db; type 2 diabetes mellitus model) and monitored for remodeling and cardiac function. Effects of glucose and the posttranslational modification by ß-linked N-acetylglucosamine (O-GlcNAc) on HDAC4 were investigated in vivo and in vitro by biochemical and cellular assays. RESULTS: We show that the cardio-protective N-terminal proteolytic fragment of HDAC4 is enhanced in vivo in patients with diabetes mellitus and mouse models, as well as in vitro under high-glucose and high-O-GlcNAc conditions. HDAC4-knockout mice develop heart failure in models of type 1 and type 2 diabetes mellitus, whereas wild-type mice do not develop clear signs of heart failure, indicating that HDAC4 protects the diabetic heart. Reexpression of the N-terminal fragment of HDAC4 prevents HDAC4-dependent diabetic cardiomyopathy. Mechanistically, the posttranslational modification of HDAC4 at serine (Ser)-642 by O-GlcNAcylation is an essential step for production of the N-terminal fragment of HDAC4, which was attenuated by Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632. Preventing O-GlcNAcylation at Ser-642 not only entirely precluded production of the N-terminal fragment of HDAC4 but also promoted Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632, pointing to a mutual posttranslational modification cross talk of (cardio-detrimental) phosphorylation at Ser-632 and (cardio-protective) O-GlcNAcylation at Ser-642. CONCLUSIONS: In this study, we found that O-GlcNAcylation of HDAC4 at Ser-642 is cardio-protective in diabetes mellitus and counteracts pathological Ca2+/calmodulin-dependent protein kinase II signaling. We introduce a molecular model explaining how diabetic metabolism possesses important cardio-protective features besides its known detrimental effects. A deeper understanding of the here-described posttranslational modification cross talk may lay the groundwork for the development of specific therapeutic concepts to treat heart failure in the context of diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/prevención & control , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/patología , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Wistar , Serina/metabolismo
19.
Nat Med ; 24(1): 62-72, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29227474

RESUMEN

The stress-responsive epigenetic repressor histone deacetylase 4 (HDAC4) regulates cardiac gene expression. Here we show that the levels of an N-terminal proteolytically derived fragment of HDAC4, termed HDAC4-NT, are lower in failing mouse hearts than in healthy control hearts. Virus-mediated transfer of the portion of the Hdac4 gene encoding HDAC4-NT into the mouse myocardium protected the heart from remodeling and failure; this was associated with decreased expression of Nr4a1, which encodes a nuclear orphan receptor, and decreased NR4A1-dependent activation of the hexosamine biosynthetic pathway (HBP). Conversely, exercise enhanced HDAC4-NT levels, and mice with a cardiomyocyte-specific deletion of Hdac4 show reduced exercise capacity, which was characterized by cardiac fatigue and increased expression of Nr4a1. Mechanistically, we found that NR4A1 negatively regulated contractile function in a manner that depended on the HBP and the calcium sensor STIM1. Our work describes a new regulatory axis in which epigenetic regulation of a metabolic pathway affects calcium handling. Activation of this axis during intermittent physiological stress promotes cardiac function, whereas its impairment in sustained pathological cardiac stress leads to heart failure.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Hexosaminas/biosíntesis , Histona Desacetilasas/metabolismo , Contracción Miocárdica , Animales , Epigénesis Genética , Técnicas de Transferencia de Gen , Insuficiencia Cardíaca/genética , Histona Desacetilasas/genética , Ratones , Ratones Noqueados , Miocardio/enzimología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Condicionamiento Físico Animal , Proteolisis , Molécula de Interacción Estromal 1/metabolismo
20.
Sci Rep ; 7(1): 15222, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29123207

RESUMEN

Atropine is a clinically relevant anticholinergic drug, which blocks inhibitory effects of the parasympathetic neurotransmitter acetylcholine on heart rate leading to tachycardia. However, many cardiac effects of atropine cannot be adequately explained solely by its antagonism at muscarinic receptors. In isolated mouse ventricular cardiomyocytes expressing a Förster resonance energy transfer (FRET)-based cAMP biosensor, we confirmed that atropine inhibited acetylcholine-induced decreases in cAMP. Unexpectedly, even in the absence of acetylcholine, after G-protein inactivation with pertussis toxin or in myocytes from M2- or M1/3-muscarinic receptor knockout mice, atropine increased cAMP levels that were pre-elevated with the ß-adrenergic agonist isoproterenol. Using the FRET approach and in vitro phosphodiesterase (PDE) activity assays, we show that atropine acts as an allosteric PDE type 4 (PDE4) inhibitor. In human atrial myocardium and in both intact wildtype and M2 or M1/3-receptor knockout mouse Langendorff hearts, atropine led to increased contractility and heart rates, respectively. In vivo, the atropine-dependent prolongation of heart rate increase was blunted in PDE4D but not in wildtype or PDE4B knockout mice. We propose that inhibition of PDE4 by atropine accounts, at least in part, for the induction of tachycardia and the arrhythmogenic potency of this drug.


Asunto(s)
Antiarrítmicos/farmacología , Atropina/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Animales , Antiarrítmicos/administración & dosificación , Atropina/administración & dosificación , AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Ratones Noqueados , Miocitos Cardíacos/fisiología , Inhibidores de Fosfodiesterasa 4/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA