Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 186(26): 5766-5783.e25, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38134874

RESUMEN

The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) ß-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.


Asunto(s)
Neuronas , Células Piramidales , Canales de Sodio Activados por Voltaje , Animales , Humanos , Ratones , Potenciales de Acción/fisiología , Axones/metabolismo , Neuronas/metabolismo , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo
2.
Pharmaceutics ; 15(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37376196

RESUMEN

The blood-brain barrier (BBB), while being the gatekeeper of the central nervous system (CNS), is a bottleneck for the treatment of neurological diseases. Unfortunately, most of the biologicals do not reach their brain targets in sufficient quantities. The antibody targeting of receptor-mediated transcytosis (RMT) receptors is an exploited mechanism that increases brain permeability. We previously discovered an anti-human transferrin receptor (TfR) nanobody that could efficiently deliver a therapeutic moiety across the BBB. Despite the high homology between human and cynomolgus TfR, the nanobody was unable to bind the non-human primate receptor. Here we report the discovery of two nanobodies that were able to bind human and cynomolgus TfR, making these nanobodies more clinically relevant. Whereas nanobody BBB00515 bound cynomolgus TfR with 18 times more affinity than it did human TfR, nanobody BBB00533 bound human and cynomolgus TfR with similar affinities. When fused with an anti-beta-site amyloid precursor protein cleaving enzyme (BACE1) antibody (1A11AM), each of the nanobodies was able to increase its brain permeability after peripheral injection. A 40% reduction of brain Aß1-40 levels could be observed in mice injected with anti-TfR/BACE1 bispecific antibodies when compared to vehicle-injected mice. In summary, we found two nanobodies that could bind both human and cynomolgus TfR with the potential to be used clinically to increase the brain permeability of therapeutic biologicals.

3.
J Biol Chem ; 299(6): 104794, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37164155

RESUMEN

Clinical development of γ-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer's disease was aborted because of serious mechanism-based side effects in the phase III trials of unselective inhibitors. Selective inhibition of specific γ-secretase complexes, containing either PSEN1 or PSEN2 as the catalytic subunit and APH1A or APH1B as supporting subunits, does provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition. We synthesized a series of brain penetrant 2-azabicyclo[2,2,2]octane sulfonamides and identified a compound with low nanomolar potency and high selectivity (>250-fold) toward the PSEN1-APH1B subcomplex versus PSEN2 subcomplexes. We used modeling and site-directed mutagenesis to identify critical amino acids along the entry part of this inhibitor into the catalytic site of PSEN1. Specific targeting one of the different γ-secretase complexes might provide safer drugs in the future.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Complejos Multiproteicos , Presenilina-1 , Sulfonamidas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Presenilina-1/antagonistas & inhibidores , Presenilina-1/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Sulfonamidas/farmacología , Especificidad por Sustrato , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/metabolismo
4.
Pharmaceutics ; 15(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37111645

RESUMEN

DNA-based antibody therapy seeks to administer the encoding nucleotide sequence rather than the antibody protein. To further improve the in vivo monoclonal antibody (mAb) expression, a better understanding of what happens after the administration of the encoding plasmid DNA (pDNA) is required. This study reports the quantitative evaluation and localization of the administered pDNA over time and its association with corresponding mRNA levels and systemic protein concentrations. pDNA encoding the murine anti-HER2 4D5 mAb was administered to BALB/c mice via intramuscular injection followed by electroporation. Muscle biopsies and blood samples were taken at different time points (up to 3 months). In muscle, pDNA levels decreased 90% between 24 h and one week post treatment (p < 0.0001). In contrast, mRNA levels remained stable over time. The 4D5 antibody plasma concentrations reached peak levels at week two followed by a slow decrease (50% after 12 weeks, p < 0.0001). Evaluation of pDNA localization revealed that extranuclear pDNA was cleared fast, whereas the nuclear fraction remained relatively stable. This is in line with the observed mRNA and protein levels over time and indicates that only a minor fraction of the administered pDNA is ultimately responsible for the observed systemic mAb levels. In conclusion, this study demonstrates that durable expression is dependent on the nuclear uptake of the pDNA. Therefore, efforts to increase the protein levels upon pDNA-based gene therapy should focus on strategies to increase both cellular entry and migration of the pDNA into the nucleus. The currently applied methodology can be used to guide the design and evaluation of novel plasmid-based vectors or alternative delivery methods in order to achieve a robust and prolonged protein expression.

5.
Front Oncol ; 12: 1017612, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263202

RESUMEN

DNA-encoded delivery and in vivo expression of antibody therapeutics presents an innovative alternative to conventional protein production and administration, including for cancer treatment. To support clinical translation, we evaluated this approach in 18 40-45 kg sheep, using a clinical-matched intramuscular electroporation (IM EP) and hyaluronidase-plasmid DNA (pDNA) coformulation setup. Two cohorts of eight sheep received either 1 or 4 mg pDNA encoding an ovine anti-cancer embryonic antigen (CEA) monoclonal antibody (mAb; OVAC). Results showed a dose-response with average maximum serum concentrations of respectively 0.3 and 0.7 µg/ml OVAC, 4-6 weeks after IM EP. OVAC was detected in all 16 sheep throughout the 6-week follow-up, and no anti-OVAC antibodies were observed. Another, more exploratory, cohort of two sheep received a 12 mg pOVAC dose. Both animals displayed a similar dose-dependent mAb increase and expression profile in the first two weeks. However, in one animal, an anti-OVAC antibody response led to loss of mAb detection four weeks after IM EP. In the other animal, no anti-drug antibodies were observed. Serum OVAC concentrations peaked at 4.9 µg/ml 6 weeks after IM EP, after which levels gradually decreased but remained detectable around 0.2 to 0.3 µg/ml throughout a 13-month follow-up. In conclusion, using a delivery protocol that is currently employed in clinical Phase 1 studies of DNA-based antibodies, we achieved robust and prolonged in vivo production of anti-cancer DNA-encoded antibody therapeutics in sheep. The learnings from this large-animal model regarding the impact of pDNA dose and host immune response on the expressed mAb pharmacokinetics can contribute to advancing clinical translation.

6.
Fluids Barriers CNS ; 19(1): 79, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192747

RESUMEN

BACKGROUND: The blood brain barrier (BBB) limits the therapeutic perspective for central nervous system (CNS) disorders. Previously we found an anti-mouse transferrin receptor (TfR) VHH (Nb62) that was able to deliver a biologically active neuropeptide into the CNS in mice. Here, we aimed to test its potential to shuttle a therapeutic relevant cargo. Since this VHH could not recognize the human TfR and hence its translational potential is limited, we also aimed to find and validate an anti-human transferrin VHH to deliver a therapeutic cargo into the CNS. METHODS: Alpaca immunizations with human TfR, and subsequent phage selection and screening for human TfR binding VHHs was performed to find a human TfR specific VHH (Nb188). Its ability to cross the BBB was determined by fusing it to neurotensin, a neuropeptide that reduces body temperature when present in the CNS but is not able to cross the BBB on its own. Next, the anti-ß-secretase 1 (BACE1) 1A11 Fab and Nb62 or Nb188 were fused to an Fc domain to generate heterodimeric antibodies (1A11AM-Nb62 and 1A11AM-Nb188). These were then administered intravenously in wild-type mice and in mice in which the murine apical domain of the TfR was replaced by the human apical domain (hAPI KI). Pharmacokinetic and pharmacodynamic (PK/PD) studies were performed to assess the concentration of the heterodimeric antibodies in the brain over time and the ability to inhibit brain-specific BACE1 by analysing the brain levels of Aß1-40. RESULTS: Selections and screening of a phage library resulted in the discovery of an anti-human TfR VHH (Nb188). Fusion of Nb188 to neurotensin induced hypothermia after intravenous injections in hAPI KI mice. In addition, systemic administration 1A11AM-Nb62 and 1A11AM-Nb188 fusions were able to reduce Aß1-40 levels in the brain whereas 1A11AM fused to an irrelevant VHH did not. A PK/PD experiment showed that this effect could last for 3 days. CONCLUSION: We have discovered an anti-human TfR specific VHH that is able to reach the CNS when administered systemically. In addition, both the currently discovered anti-human TfR VHH and the previously identified mouse-specific anti-TfR VHH, are both able to shuttle a therapeutically relevant cargo into the CNS. We suggest the mouse-specific VHH as a valuable research tool in mice and the human-specific VHH as a moiety to enhance the delivery efficiency of therapeutics into the CNS in human patients.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Animales , Anticuerpos/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Barrera Hematoencefálica/metabolismo , Humanos , Ratones , Neurotensina , Receptores de Transferrina , Transferrina/metabolismo
7.
EMBO Mol Med ; 14(4): e09824, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35352880

RESUMEN

Single domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood-brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS. As a proof-of-concept, we explored the potential of AAV-delivered VHH to inhibit BACE1, a well-characterized target in Alzheimer's disease. First, we generated a panel of VHHs targeting BACE1, one of which, VHH-B9, shows high selectivity for BACE1 and efficacy in lowering BACE1 activity in vitro. We further demonstrate that a single systemic dose of AAV-VHH-B9 produces positive long-term (12 months plus) effects on amyloid load, neuroinflammation, synaptic function, and cognitive performance, in the AppNL-G-F Alzheimer's mouse model. These results constitute a novel therapeutic approach for neurodegenerative diseases, which is applicable to a range of CNS disease targets.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Anticuerpos de Dominio Único , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/inmunología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/inmunología , Ácido Aspártico Endopeptidasas/metabolismo , Barrera Hematoencefálica , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/uso terapéutico , Ratones , Ratones Transgénicos
8.
Anal Chim Acta ; 1178: 338803, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34482878

RESUMEN

The use of biologics in the therapeutic landscape has increased exponentially since the last 3 decades. Nevertheless, patients with central nervous system (CNS) related disorders could not yet benefit from this revolution because the blood-brain barrier (BBB) severely hampers biologics from entering the brain. Considerable effort has been put into generating methods to modulate or circumvent the BBB for delivery of therapeutics to the CNS. A promising strategy is receptor-mediated transcytosis (RMT). Recently, Wouters et al. (2020) discovered a mouse anti-transferrin receptor nanobody that is able to deliver a biologically active peptide to the brain via RMT. The present study aims to sample a derivative of this brain-penetrating nanobody (Nb105) in the CNS. Therefore, we compared the applicability of cerebral open flow microperfusion (cOFM) and microdialysis as sampling techniques to directly obtain high molecular weight substances from the cerebral interstitial fluid. A custom AlphaScreen™ assay was validated to quantify nanobody concentrations in the samples. In vitro microdialysis probe (AtmosLM™, 1 MDa cut-off) recovery by gain and by loss for Nb105 was 18.3 ± 3.2% and 27.0 ± 2.5% respectively, whereas for cOFM it was 87.2 ± 4.0% and 97.3 ± 1.6%. Although a large difference in in vitro recovery is observed between cOFM and microdialysis, in vivo similar results were obtained. Immunohistochemical stainings showed an astrocytic and microglial reaction in the immediate vicinity along the implantation track for both probe types. Coronal sections showed higher fluorescein isothiocyanate-dextran and immunoglobulin G extravasation around the microdialysis probe track than after cOFM sampling experiments, however this leakage was clearly limited compared to a positive control where the BBB was disrupted. This is the first study that samples a bispecific nanobody in the brain's interstitial fluid in function of time, providing a pharmacokinetic profile of nanobodies in the CNS. Furthermore, this is the first time a cOFM study is performed in awake freely moving mice, providing data on inflammation and blood-brain barrier integrity in the mouse brain. Overall, this work demonstrates that, while taking into account the (bio)analytical considerations, both microdialysis and cOFM are suitable in vivo sampling techniques for quantification of nanobodies in the CNS.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Animales , Transporte Biológico , Líquido Extracelular , Humanos , Ratones , Microdiálisis
9.
Cancers (Basel) ; 12(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266104

RESUMEN

Neuropilin-1 (NRP-1) is a co-receptor for semaphorins and vascular endothelial growth factor (VEGF) family members that can be expressed on cancer cells and tumor-infiltrating myeloid, endothelial and lymphoid cells. It has been linked to a tumor-promoting environment upon interaction with semaphorin 3A (Sema3A). Nanobodies (Nbs) targeting NRP-1 were generated for their potential to hamper the NRP-1/Sema3A interaction and their impact on colorectal carcinoma (CRC) development was evaluated in vivo through the generation of anti-NRP-1-producing CRC cells. We observed that tumor growth was significantly delayed and survival prolonged when the anti-NRP-1 Nbs were produced in vivo. We further analyzed the tumor microenvironment and observed that the pro-inflammatory MHC-IIhigh/trophic MHC-IIlow macrophage ratio was increased in tumors that produce anti-NRP-1 Nbs. This finding was corroborated by an increase in the expression of genes associated with MHC-IIhigh macrophages and a decrease in the expression of MHC-IIlow macrophage-associated genes in the macrophage pool sorted from anti-NRP-1 Nb-producing tumors. Moreover, we observed a significantly higher percentage of tumor-associated antigen-specific CD8+ T cells in tumors producing anti-NRP-1 Nbs. These data demonstrate that an intratumoral expression of NRP-1/Sema3A blocking biologicals increases anti-tumor immunity.

10.
J Biol Chem ; 292(27): 11452-11465, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28526745

RESUMEN

The ephrin receptor A4 (EphA4) is one of the receptors in the ephrin system that plays a pivotal role in a variety of cell-cell interactions, mostly studied during development. In addition, EphA4 has been found to play a role in cancer biology as well as in the pathogenesis of several neurological disorders such as stroke, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease. Pharmacological blocking of EphA4 has been suggested to be a therapeutic strategy for these disorders. Therefore, the aim of our study was to generate potent and selective Nanobodies against the ligand-binding domain of the human EphA4 receptor. We identified two Nanobodies, Nb 39 and Nb 53, that bind EphA4 with affinities in the nanomolar range. These Nanobodies were most selective for EphA4, with residual binding to EphA7 only. Using Alphascreen technology, we found that both Nanobodies displaced all known EphA4-binding ephrins from the receptor. Furthermore, Nb 39 and Nb 53 inhibited ephrin-induced phosphorylation of the EphA4 protein in a cell-based assay. Finally, in a cortical neuron primary culture, both Nanobodies were able to inhibit endogenous EphA4-mediated growth-cone collapse induced by ephrin-B3. Our results demonstrate the potential of Nanobodies to target the ligand-binding domain of EphA4. These Nanobodies may deserve further evaluation as potential therapeutics in disorders in which EphA4-mediated signaling plays a role.


Asunto(s)
Afinidad de Anticuerpos , Receptor EphA4/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Línea Celular , Humanos , Ratones , Dominios Proteicos , Receptor EphA4/química , Anticuerpos de Dominio Único/química
11.
J Struct Biol ; 171(1): 95-101, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20230900

RESUMEN

Plasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor (serpin) that plays an important role in cardiovascular disorders and tumor development. The potential role of PAI-1 as a drug target has been evaluated in various animal models (e.g. mouse and rat). Sensitivity to PAI-1 inhibitory agents varied in different species. To date, absence of PAI-1 structures from species other than human hampers efforts to reveal the molecular basis for the observed species differences. Here we describe the structure of latent mouse PAI-1. Comparison with available structures of human PAI-1 reveals (1) a differential positioning of α-helix A; (2) differences in the gate region; and (3) differences in the reactive center loop position. We demonstrate that the optimal binding site of inhibitors may be dependent on the orthologs, and our results affect strategies in the rational design of a pharmacologically active PAI-1 inhibitor.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico/química , Serpina E2/química , Animales , Sitios de Unión , Cristalización , Humanos , Ratones , Modelos Moleculares , Mutación , Inhibidor 1 de Activador Plasminogénico/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de Proteína , Serpina E2/genética
12.
Thromb Haemost ; 102(1): 69-75, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19572070

RESUMEN

Thrombin activatable fibrinolysis inhibitor (TAFI) attenuates fibrinolysis and is considered as an attractive drug target. We generated two different antibody fragments, an antigen-binding fragment (Fab) and a single-chain variable fragment (scFv), derived from three distinct monoclonal antibodies (MAs) that inhibit the activation of TAFI by the thrombin/thrombomodulin complex (T/TM) and plasmin (MA-T1C10 and MA-T94H3) or by T/TM alone (MA-T12D11). The Fabs were obtained by papain digestion of the purified MAs, whereas the scFvs were cloned and subsequently expressed in bacteria. All antibody fragments revealed similar or slightly decreased affinities compared to those of the respective MAs, except scFv-T94H3. In the presence of a 16-fold molar excess of all antibody fragments, activation of TAFI by T/TM was completely blocked. Furthermore, Fab and scFv-derivatives from MA-T1C10 and MA-T94H3 were capable of interfering with the plasmin-mediated activation of TAFI. Addition of 850 nM of MA, Fab or scFv to an in-vitro clot lysis assay caused a significant reduction of clot lysis time (except for scFv-T94H3) and this effect was comparable to that of potato tuber carboxypeptidase inhibitor, a well-known TAFIa inhibitor. Dose-response experiments with the antibody (derivatives) in clot lysis and chromogenic assay revealed that the inhibitory capacity of the Fabs was comparable to that of the MAs, whereas the scFvs had a more reduced potency. In conclusion, these highly specific TAFI inhibitors are interesting tools to further evaluate the concept of TAFI inhibition in various in-vitro and in-vivo models.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Carboxipeptidasa B2/inmunología , Fibrinólisis/fisiología , Fragmentos Fab de Inmunoglobulinas/inmunología , Región Variable de Inmunoglobulina/inmunología , Secuencia de Aminoácidos , Carboxipeptidasa B2/metabolismo , Clonación Molecular , Relación Dosis-Respuesta Inmunológica , Diseño de Fármacos , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/farmacología , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/farmacología , Datos de Secuencia Molecular , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo
13.
Structure ; 15(9): 1105-16, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17850750

RESUMEN

Elevated plasma levels of plasminogen activator inhibitor-1 (PAI-1) have been correlated with cardiovascular diseases such as myocardial infarction and venous thrombosis. PAI-1 has also been shown to play an important role in tumor development, diabetes, and obesitas. Monoclonal antibodies MA-8H9D4 and MA-56A7C10, and their single-chain variable fragments (scFv), exhibit PAI-1-neutralizing properties. In this study, a rigid-body docking approach is used to predict the binding geometry of two distinct conformations of PAI-1 (active and latent) in complex with these antibody fragments. Resulting models were initially refined by using the dead-end elimination algorithm. Different filtering criteria based on the mutagenesis studies and structural considerations were applied to select the final models. These were refined by using the slow-cooling torsion-angle dynamic annealing protocol. The docked structures reveal the respective epitopes and paratopes and their potential interactions. This study provides crucial information that is necessary for the rational development of low-molecular weight PAI-1 inhibitors.


Asunto(s)
Fragmentos de Inmunoglobulinas/química , Inhibidor 1 de Activador Plasminogénico/química , Fragmentos de Inmunoglobulinas/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Inhibidor 1 de Activador Plasminogénico/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
14.
J Biol Chem ; 278(26): 23899-905, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12686544

RESUMEN

The serpin plasminogen activator inhibitor-1 (PAI-1) plays an important role in the regulation of the fibrinolytic activity in blood. In plasma, PAI-1 circulates mainly in the active conformation. However, PAI-1 spontaneously converts to a latent conformation. This conversion comprises drastic conformational changes in both the distal and the proximal hinge region of the reactive center loop. To study the functional and conformational rearrangements associated solely with the mobility of the proximal hinge, disulfide bonds were introduced to immobilize the distal hinge region. These mutants exhibited specific activities comparable with that of PAI-1-wt. However, the engineered disulfide bond had a major effect on the conformational and associated functional transitions. Strikingly, in contrast to PAI-1-wt, inactivation of these mutants yielded a virtually complete conversion to a substrate-like conformation. Comparison of the digestion pattern (with trypsin and elastase) of the mutants and PAI-1-wt revealed that the inactivated mutants have a conformation differing from that of latent and active PAI-1-wt. Unique trypsin-susceptible cleavage sites arose upon inactivation of these mutants. The localization of these exposed residues provides evidence that a displacement of alphahF has occurred, indicating that the proximal hinge is partly inserted between s3A and s5A. In conclusion, immobilization of the distal hinge region in PAI-1 allowed the identification of an "intermediate" conformation characterized by a partial insertion of the proximal hinge region. We hypothesize that locking PAI-1 in this transition state between active and latent conformations is associated with a displacement of alphahF, subsequently resulting in substrate behavior.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico/química , Disulfuros , Inhibidores Enzimáticos/química , Humanos , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mapeo Peptídico , Conformación Proteica , Desnaturalización Proteica , Temperatura , Activador de Tejido Plasminógeno/antagonistas & inhibidores , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA