Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(7): e1012382, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991025

RESUMEN

Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of L. donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.

2.
Mol Cell Oncol ; 11(1): 2328873, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487372

RESUMEN

Cisplatin is the commonly used chemotherapeutic drug in treatment of various cancers. However, development of resistance towards cisplatin results in tumor recurrence. Here, we aim to understand the mechanisms of action of cisplatin and emergence of resistance to cisplatin using mass spectrometry-based proteomic approach. A panel of head and neck squamous cell carcinoma (HNSCC) cell lines were treated with cisplatin at respective IC50 for 24 h and label-free mass spectrometry analysis was carried out. Proteomic analysis of A253, FaDu, Det562 and CAL27 cell lines upon cisplatin treatment resulted in the identification of 5,060, 4,816, 4,537 and 4,142 proteins, respectively. Bioinformatics analysis of differentially regulated proteins revealed proteins implicated in DNA damage bypass pathway, translation and mRNA splicing to be enriched. Further, proteins associated with cisplatin resistance exhibited alterations following short-term cisplatin exposure. Among these, class III tubullin protein (TUBB3) was found to be upregulated in cisplatin-treated cells compared to untreated cells. Western blot analysis confirmed the elevated expression of TUBB3 in cells treated with cisplatin for 24 h, and also in cisplatin resistant HNSCC cell lines. This study delineates the early signaling events that enable HNSCC cells to counteract the cytotoxic effects of cisplatin and facilitate the development of resistance.

3.
Proteomics ; 24(14): e2300495, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38212249

RESUMEN

Thalassemias are a group of inherited monogenic disorders characterized by defects in the synthesis of one or more of the globin chain subunits of the hemoglobin tetramer. Delta-beta (δß-) thalassemia has large deletions in the ß globin gene cluster involving δ- and ß-globin genes, leading to absent or reduced synthesis of both δ- and ß-globin chains. Here, we used direct globin-chain analysis using tandem mass spectrometry for the diagnosis of δß-thalassemia. Two cases from unrelated families were recruited for the study based on clinical and hematological evaluation. Peptides obtained after trypsin digestion of proteins extracted from red blood cell pellets from two affected individuals and their parents were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mass spectrometric analysis revealed a severe reduction in δ, ß, and Aγ globin proteins with increased Gγ globin protein in the affected individuals. The diagnosis of Gγ(Aγδß)0 -thalassemia in the homozygous state in the affected individuals and in the heterozygous state in the parents was made from our results. The diagnosis was confirmed at the genetic level using multiplex ligation-dependent probe amplification (MLPA). Our findings demonstrate the utility of direct globin protein quantitation using LC-MS/MS to quantify individual globin proteins reflecting changes in globin production. This approach can be utilized for accurate and timely diagnosis of hemoglobinopathies, including rare variants, where existing diagnostic methods provide inconclusive results.


Asunto(s)
Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Masculino , Femenino , Cromatografía Liquida/métodos , Globinas beta/genética , gamma-Globinas/genética
4.
J Neurochem ; 167(2): 218-247, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37694499

RESUMEN

Traumatic brain injury (TBI) causes significant neurological deficits and long-term degenerative changes. Primary injury in TBI entails distinct neuroanatomical zones, i.e., contusion (Ct) and pericontusion (PC). Their dynamic expansion could contribute to unpredictable neurological deterioration in patients. Molecular characterization of these zones compared with away from contusion (AC) zone is invaluable for TBI management. Using proteomics-based approach, we were able to distinguish Ct, PC and AC zones in human TBI brains. Ct was associated with structural changes (blood-brain barrier (BBB) disruption, neuroinflammation, axonal injury, demyelination and ferroptosis), while PC was associated with initial events of secondary injury (glutamate excitotoxicity, glial activation, accumulation of cytoskeleton proteins, oxidative stress, endocytosis) and AC displayed mitochondrial dysfunction that could contribute to secondary injury events and trigger long-term degenerative changes. Phosphoproteome analysis in these zones revealed that certain differentially phosphorylated proteins synergistically contribute to the injury events along with the differentially expressed proteins. Non-synaptic mitochondria (ns-mito) was associated with relatively more differentially expressed proteins (DEPs) compared to synaptosomes (Syn), while the latter displayed increased protein oxidation including tryptophan (Trp) oxidation. Proteomic analysis of immunocaptured complex I (CI) from Syn revealed increased Trp oxidation in Ct > PC > AC (vs. control). Oxidized W272 in the ND1 subunit of CI, revealed local conformational changes in ND1 and the neighboring subunits, as indicated by molecular dynamics simulation (MDS). Taken together, neuroanatomical zones in TBI show distinct protein profile and protein oxidation representing different primary and secondary injury events with potential implications for TBI pathology and neurological status of the patients.

5.
J Med Chem ; 66(13): 8896-8916, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37343180

RESUMEN

While treatment options for human African trypanosomiasis (HAT) have improved significantly, there is still a need for new drugs with eradication now a realistic possibility. Here, we report the development of 2,4-diaminothiazoles that demonstrate significant potency against Trypanosoma brucei, the causative agent of HAT. Using phenotypic screening to guide structure-activity relationships, potent drug-like inhibitors were developed. Proof of concept was established in an animal model of the hemolymphatic stage of HAT. To treat the meningoencephalitic stage of infection, compounds were optimized for pharmacokinetic properties, including blood-brain barrier penetration. However, in vivo efficacy was not achieved, in part due to compounds evolving from a cytocidal to a cytostatic mechanism of action. Subsequent studies identified a nonessential kinase involved in the inositol biosynthesis pathway as the molecular target of these cytostatic compounds. These studies highlight the need for cytocidal drugs for the treatment of HAT and the importance of static-cidal screening of analogues.


Asunto(s)
Citostáticos , Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Humanos , Tripanosomiasis Africana/tratamiento farmacológico , Tripanocidas/uso terapéutico , Tripanocidas/farmacocinética , Citostáticos/uso terapéutico , Barrera Hematoencefálica
6.
Neurochem Res ; 48(8): 2360-2389, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36964824

RESUMEN

Mitochondrial dysfunction and oxidative stress are critical to neurodegeneration in Parkinson's disease (PD). Mitochondrial dysfunction in PD entails inhibition of the mitochondrial complex I (CI) in the dopaminergic neurons of substantia nigra. The events contributing to CI inhibition and downstream pathways are not completely elucidated. We conducted proteomic analysis in a dopaminergic neuronal cell line exposed individually to neurotoxic CI inhibitors: rotenone (Rot), paraquat (Pq) and 1-methyl-4-phenylpyridinium (MPP+). Mass spectrometry (MS) revealed the involvement of biological processes including cell death pathways, structural changes and metabolic processes among others, most of which were common across all models. The proteomic changes induced by Pq were significantly higher than those induced by Rot and MPP+. Altered metabolic processes included downregulated mitochondrial proteins such as CI subunits. MS of CI isolated from the models revealed oxidative post-translational modifications with Tryptophan (Trp) oxidation as the predominant modification. Further, 62 peptides in 22 subunits of CI revealed Trp oxidation with 16 subunits common across toxins. NDUFV1 subunit had the greatest number of oxidized Trp and Rot model displayed the highest number of Trp oxidation events compared to the other models. Molecular dynamics simulation (MDS) of NDUFV1 revealed that oxidized Trp 433 altered the local conformation thereby changing the distance between the Fe-S clusters, Fe-S 301(N1a) to Fe-S 502 (N3) and Fe-S 802 (N4) to Fe-S 801 (N5), potentially affecting the efficiency of electron transfer. The events triggered by the neurotoxins represent CI damage, mitochondrial dysfunction and neurodegeneration in PD.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Humanos , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteómica , Muerte Celular , Paraquat/toxicidad , 1-Metil-4-fenilpiridinio/toxicidad , Rotenona/toxicidad , Complejo I de Transporte de Electrón/metabolismo
7.
STAR Protoc ; 4(1): 102002, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36609153

RESUMEN

Here, we provide a protocol using chemical pulldown combined with mass spectrometry (LC-MS/MS) to identify drug targets in Plasmodium falciparum. This approach works upon the principle that a resin-bound inhibitor selectively binds its molecular target(s) in cell-free lysates. We describe the preparation of drug beads and P. falciparum lysate, followed by chemical pulldown, sample fractionation, and LC-MS/MS analysis. We then detail how to identify specifically bound proteins by comparing protein enrichment in DMSO-treated relative to drug-treated lysates via quantitative proteomics. For complete details on the use and execution of this protocol, please refer to Milne et al. (2022).1.


Asunto(s)
Antimaláricos , Cromatografía Liquida/métodos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/metabolismo , Espectrometría de Masas en Tándem/métodos , Proteínas/metabolismo , Plasmodium falciparum
8.
Toxicol Rep ; 9: 1501-1513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518382

RESUMEN

Lead (Pb2+), a ubiquitously present heavy metal toxin, has various detrimental effects on memory and cognition. However, the molecular processes affected by Pb2+ causing structural and functional anomalies are still unclear. To explore this, we employed behavioral and proteomic approaches using rat pups exposed to lead acetate through maternal lactation from postnatal day 0 (P0) until weaning. Behavioral results from three-month-old rats clearly emphasized the early life Pb2+ exposure induced impairments in spatial cognition. Further, proteomic analysis of synaptosomal fractions revealed differential alteration of 289 proteins, which shows functional significance in elucidating Pb2+ induced physiological changes. Focusing on the association of Small Ubiquitin-like MOdifier (SUMO), a post-translational modification, with Pb2+ induced cognitive abnormalities, we identified 45 key SUMO target proteins. The significant downregulation of SUMO target proteins such as metabotropic glutamate receptor 3 (GRM3), glutamate receptor isoforms 2 and 3 (GRIA 2 and GRIA3) and flotilin-1 (FLOT1) indicates SUMOylation at the synapses could contribute to and drive Pb2+ induced physiological imbalance. These findings identify SUMOylation as a vital protein modifier with potential roles in hippocampal memory consolidation and regulation of cognition. Data availbility: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD034212".

9.
Free Radic Biol Med ; 193(Pt 1): 34-57, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36195160

RESUMEN

Selective neuronal vulnerability (SNV) of specific neuroanatomical regions such as frontal cortex (FC) and hippocampus (HC) is characteristic of age-associated neurodegenerative diseases (NDDs), although its pathogenetic basis remains unresolved. We hypothesized that physiological differences in mitochondrial function in neuroanatomical regions could contribute to SNV. To investigate this, we evaluated mitochondrial function in human brains (age range:1-90 y) in FC, striatum (ST), HC, cerebellum (CB) and medulla oblongata (MD), using enzyme assays and quantitative proteomics. Striking differences were noted in resistant regions- MD and CB compared to the vulnerable regions- FC, HC and ST. At younger age (25 ± 5 y), higher activity of electron transport chain enzymes and upregulation of metabolic and antioxidant proteins were noted in MD compared to FC and HC, that was sustained with increasing age (≥65 y). In contrast, the expression of synaptic proteins was higher in FC, HC and ST (vs. MD). In line with this, quantitative phospho-proteomics revealed activation of upstream regulators (ERS, PPARα) of mitochondrial metabolism and inhibition of synaptic pathways in MD. Microtubule Associated Protein Tau (MAPT) showed overexpression in FC, HC and ST both in young and older age (vs. MD). MAPT hyperphosphorylation and the activation of its kinases were noted in FC and HC with age. Our study demonstrates that regional heterogeneity in mitochondrial and other cellular functions contribute to SNV and protect regions such as MD, while rendering FC and HC vulnerable to NDDs. The findings also support the "last in, first out" hypothesis of ageing, wherein regions such as FC, that are the most recent to develop phylogenetically and ontogenetically, are the first to be affected in ageing and NDDs.


Asunto(s)
Encéfalo , Enfermedades Neurodegenerativas , Humanos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Envejecimiento/genética , Mitocondrias/metabolismo , Hipocampo/metabolismo , Enfermedades Neurodegenerativas/metabolismo
10.
Neurochem Res ; 47(6): 1610-1636, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35229271

RESUMEN

Rabies is a fatal encephalitis caused by the Rabies lyssavirus (RABV). The presence of minimal neuropathological changes observed in rabies indicates that neuronal dysfunction, rather than neuronal death contributes to the fatal outcome. The role of mitochondrial changes has been suggested as a possible mechanism for neuronal dysfunction in rabies. However, these findings are mostly based on studies that have employed experimental models and laboratory-adapted virus. Studies on brain tissues from naturally infected human and animal hosts are lacking. The current study investigated the role of mitochondrial changes in rabies by morphological, biochemical and proteomic analysis of RABV-infected human and canine brains. Morphological analysis showed minimal inflammation with preserved neuronal and disrupted mitochondrial structure in both human and canine brains. Proteomic analysis revealed involvement of mitochondrial processes (oxidative phosphorylation, cristae formation, homeostasis and transport), synaptic proteins and autophagic pathways, with over-expression of subunits of mitochondrial respiratory complexes. Consistent with these findings, human and canine brains displayed elevated activities of complexes I (p < 0.05), IV (p < 0.05) and V (p < 0.05). However, this did not result in elevated ATP production (p < 0.0001), probably due to lowered mitochondrial membrane potential as noted in RABV-infected cells in culture. These could lead to mitochondrial dysfunction and mitophagy as indicated by expression of FKBP8 (p < 0.05) and PINK1 (p < 0.001)/PARKIN (p > 0.05) and ensuing autophagy, as shown by the status of LCIII (p < 0.05), LAMP1 (p < 0.001) and pertinent ultrastructural markers. We propose that altered mitochondrial bioenergetics and cristae architecture probably induce mitophagy, leading to autophagy and consequent neuronal dysfunction in rabies.


Asunto(s)
Virus de la Rabia , Rabia , Animales , Encéfalo/metabolismo , Perros , Humanos , Mitocondrias/metabolismo , Proteómica , Rabia/metabolismo , Rabia/patología , Virus de la Rabia/fisiología
11.
J Cell Commun Signal ; 15(4): 595-600, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34487344

RESUMEN

Severe acute respiratory syndrome coronaviruses (SARS-CoVs) caused worldwide epidemics over the past few decades. Extensive studies on various strains of coronaviruses provided a basic understanding of the pathogenesis of the disease. Presently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading a global pandemic with unprecedented challenges. This is the third coronavirus outbreak of this century. A signaling pathway map of signaling events induced by SARS-CoV infection is not yet available. In this study, we present a literature-annotated signaling pathway map of reactions induced by SARS-CoV infected cells. Multiple signaling modules were found to be orchestrated including PI3K-AKT, Ras-MAPK, JAK-STAT, Type 1 IFN and NFκB. The signaling pathway map of SARS-CoV consists of 110 molecules and 101 reactions mediated by SARS-CoV proteins. The pathway reaction data are available in various community standard data exchange formats including Systems Biology Graphical Notation (SBGN). The pathway map is publicly available through the GitHub repository and data in various formats can be freely downloadable.

12.
J Proteins Proteom ; 12(3): 151-160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36619276

RESUMEN

Peptides presented by MHC molecules on the cell surface, or the immunopeptidome, play an important role in the adaptive arm of the immune response. Antigen processing for MHC class I molecules is a ubiquitous pathway present in all nucleated cells which generates and presents peptides of both self and non-self-origin. Peptides with post-translational modifications represent one category of peptides presented by MHC class I molecules. However, owing to the complexity of self-peptides presented by cells, the diversity of peptides with post-translational modifications is not well-studied. In this study, we carried out MHC Class I immunopeptidomics analysis of Loucy T-cell leukemia and A375 malignant melanoma cell line to characterize the diversity of post-translational modifications of MHC class I-bound peptides. Using high resolution mass spectrometry, we identified 25,761 MHC-bound peptides across both cell lines using Bolt and Sequest search engines. The enrichment method was highly specific as ~ 90% of the peptides were of typical length (8-12 amino acids long) and the motifs were expected based on previously reported motifs for MHC I alleles. Among the MHC-bound peptides, we identified phosphorylation as a major post-translational modification followed by deamidation. We observed site-specific localization of these post-translational modifications, at position P4 for phosphorylated peptides and position P3 for deamidated peptides. We identified a smaller number of peptides with acetylated and methylated lysine, possibly due to very low stoichiometric levels of these PTMs compared to phosphorylation and deamidation. Using PEAKS de novo sequencing algorithm, we identified spliced peptides that accounted for ~ 5-7% of MHC-bound peptides that were otherwise similar in their features as normal MHC-bound peptides. We validated the identity of several post-translationally modified peptides and spliced peptides through mass spectrometric analysis of synthetic peptides. Our study confirms post-translationally modified peptides to be present at low stoichiometric levels along with unusual spliced peptides through unbiased identification using high resolution mass spectrometry. Supplementary Information: The online version contains supplementary material available at 10.1007/s42485-021-00066-x.

13.
Data Brief ; 32: 106243, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32984457

RESUMEN

Mosquitoes with their ability to transmit several pathogens of human disease pose a serious threat to healthcare worldwide. Although much has been done to prevent the disease transmission by mosqitos. The rising rate of resistance in mosquitos towards conventionally used control strategies necessitates developing of novel strategies to counter disease transmission. The mosquito brain plays a key role in host-seeking, finding mates and selection of oviposition sites. However, not much is know about the underlying physiological processes in mosquito brain. The data presented in this study describes the proteins that have been identified in the brain tissue of adult female Anopheles stephensi and their associated processes. Interpretation of the data can be related to the previously published article "Integrating transcriptomics and proteomics data for accurate assembly and annotation of genomes" [1].

14.
J Proteome Res ; 19(8): 3364-3376, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32508098

RESUMEN

Malnad Gidda is a dwarf indigenous cattle breed of India, which is known for its uniqueness of calving every year under a low input grazing system of rearing. Bulls of Malnad Gidda are known to be highly fertile even in stress conditions. However, the proteomic profiling of semen of this breed has not been investigated so far, which might provide a platform for a better understanding of its semen quality and male fertility. Therefore, we made an effort to characterize and quantify the proteome of seminal plasma and spermatozoa components of Malnad Gidda semen using a high-resolution mass spectrometry platform. We identified 2814 proteins from spermatozoa and 1974 proteins from the seminal plasma of this breed. Furthermore, >90% of proteins from each fraction were quantified using the intensity-based absolute quantification. We observed signal peptides in 33% of seminal plasma proteins, indicating their secretory nature. Gene Ontology analysis revealed their involvement in cytoskeletal assembly associated with sperm head, sperm motility, acrosome reaction, seminal plasma binding, and spermatogenesis-associated protein. An in-depth proteome profiling of semen of a unique indigenous cattle breed of India was carried out. Our findings could provide a reference for further studies on sperm functions, semen quality, and reproductive health of Bos indicus cattle. Mass spectrometry data generated in this study is deposited and publicly made available through ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD014172.


Asunto(s)
Proteoma , Análisis de Semen , Semen , Animales , Bovinos , India , Masculino , Proteómica , Motilidad Espermática , Espermatozoides
15.
OMICS ; 24(8): 483-492, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32525733

RESUMEN

The scientific basis of intracranial aneurysm (IA) formation, its rupture and further development of cerebral vasospasm is incompletely understood. Aberrant protein expression may drive structural alterations of vasculature found in IA. Deciphering the molecular mechanisms underlying these events will lead to identification of early detection biomarkers and in turn, improved treatment outcomes. To unravel differential protein expression in three clinical subgroups of IA patients: (1) unruptured aneurysm, (2) ruptured aneurysm without vasospasm, (3) ruptured aneurysm who developed vasospasm, we performed untargeted quantitative proteomic analysis of aneurysm tissue and serum samples from three subgroups of IA patients and control subjects. Candidate molecules were then validated in a larger cohort of patients using enzyme-linked immunosorbent assay. A total of 937 and 294 proteins were identified from aneurysm tissue and serum samples, respectively. Several proteins that are known to maintain structural integrity of vasculature were found to be dysregulated in the context of aneurysm. ORM1, a glycoprotein, was significantly upregulated in both tissue and serum samples of unruptured aneurysm patients. We employed a larger cohort of subjects (n = 26) and validated ORM1 as a potential biomarker for screening of unruptured aneurysms. Samples from ruptured aneurysms with vasospasm showed significant upregulation of MMP9, a protease, compared with ruptured aneurysms without vasospasm. We validated MMP9 as a potential biomarker for vasospasm in a larger cohort (n = 52). This study reports the first global proteomic analysis of the entire clinical spectrum of IA. Furthermore, this study suggests ORM1 and MMP9 as potential biomarkers for unruptured aneurysm and cerebral vasospasm, respectively.


Asunto(s)
Biomarcadores , Aneurisma Intracraneal/metabolismo , Proteoma , Proteómica , Adulto , Aneurisma Roto/metabolismo , Biomarcadores/sangre , Cromatografía Liquida , Biología Computacional/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Aneurisma Intracraneal/diagnóstico , Aneurisma Intracraneal/etiología , Aneurisma Intracraneal/cirugía , Masculino , Persona de Mediana Edad , Modelos Biológicos , Proteómica/métodos , Curva ROC , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
16.
Data Brief ; 24: 103911, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31049374

RESUMEN

Antennae of female Anopheles stephensi mosquitoes were dissected and lysed with 1% SDS. Proteins were extracted using ultra sonication and analyzed on high resolution mass spectrometer. Proteomic data was analyzed using two search algorithms SEQUEST and Mascot, resulting in the identification of 22,729 peptides corresponding to 3262 proteins. These proteins were characterized using different bioinformatics tools. VectorBase resource was used to assign Gene Ontology (GO) terms. Using Biomart tool ortholog information was fetched from the VectorBase database. Raw mass spectrometric data was deposited in ProteomeXchange Consortium via PRIDE partner repository in the public dataset PXD001128. Proteins involved in insecticide resistance and odorant binding were the most abundant in the antennae. The proteins identified in this study could be targeted for developing novel vector control strategy.

17.
Data Brief ; 22: 1068-1073, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30740495

RESUMEN

Fat body from Anopheles stephensi female mosquitoes were dissected and processed for proteomic analysis. Both SDS-PAGE and basic Reverse Phase Liquid Chromatography-based fractionation strategies were used to achieve a broad coverage of protein identification. The fractionated peptides were then analyzed on a high-resolution mass spectrometer. Searching the raw data against the protein database of An. stephensi resulted in identification of 4535 proteins, which is, to our knowledge, the largest catalog of fat body proteome in any mosquito vector species reported so far. Bioinformatics analysis on these fat body proteins suggested the enrichment of biological processes including carbon and lipid metabolism, amino acid metabolism, signal peptide processing and oxidation-reduction. In addition, using proteogenomic approaches, 43 novel proteins were identified, which were not listed in the annotated gene annotations of An. stephensi. The data used in the analysis are related to the article 'Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes' (Prasad et al., 2017).

18.
OMICS ; 22(12): 759-769, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30571610

RESUMEN

The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.


Asunto(s)
Adenohipófisis/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Cromatografía Liquida , Humanos , Espectrometría de Masas
19.
Data Brief ; 20: 1861-1866, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30294636

RESUMEN

The data presented in this article is associated with the quantitative proteomic analysis of four mosquito tissues - midgut, Malpighian tubules, ovaries and fat body from female Anopheles stephensi mosquitoes. To identify the proteins that were expressed in a tissue-specific manner, the four mosquito tissues were labelled with iTRAQ labels and analyzed using a high-resolution mass spectrometer. Database searches of the 1,10,616 raw spectra from 23 peptide fractions resulted in the identification of 84,733 peptide spectrum matches corresponding to 16,278 peptides and 3372 proteins. Of these, 959 proteins were found to be differentially expressed across the tissues. Gene ontology-based bioinformatic analysis of the differentially expressed proteins are also provided in the article. The data in this article has been deposited in the (ProteomeXchange) Consortium via the PRIDE repository and can be accessed through the accession ID, PXD001128.

20.
Data Brief ; 20: 723-731, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30211266

RESUMEN

This article contains data on the proteins expressed in the ovaries of Anopheles stephensi, a major vector of malaria in India. Data acquisition was performed using a high-resolution Orbitrap-Velos mass spectrometer. The acquired MS/MS data was searched against An. stephensi protein database comprising of 11,789 sequences. Overall, 4407 proteins were identified, functional analysis was performed for the identified proteins and a protein-protein interaction map predicted. The data provided here is also related to a published article - "Integrating transcriptomics and proteomics data for accurate assembly and annotation of genomes" (Prasad et al., 2017) [1].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...