Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826295

RESUMEN

The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this post-translational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism. We demonstrate that the stability of gsKaiB increases with temperature compared to fsKaiB and that the Q10 value for the gsKaiB → fsKaiB transition is nearly three times smaller than that for the reverse transition. Simulations and native-state hydrogen-deuterium exchange NMR experiments suggest that fold switching can involve both subglobally and near-globally unfolded intermediates. The simulations predict that the transition state for fold switching coincides with isomerization of conserved prolines in the most rapidly exchanging region, and we confirm experimentally that proline isomerization is a rate-limiting step for fold switching. We explore the implications of our results for temperature compensation, a hallmark of circadian clocks, through a kinetic model.

2.
mBio ; 15(7): e0119824, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38832773

RESUMEN

Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).


Asunto(s)
Proteínas Bacterianas , Stenotrophomonas maltophilia , Sistemas de Secreción Tipo IV , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/enzimología , Stenotrophomonas maltophilia/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Conformación Proteica
3.
Microbiol Resour Announc ; 12(10): e0050723, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37747257

RESUMEN

Clostridioides difficile causes life-threatening gastrointestinal infections. It is a high-risk pathogen due to a lack of effective treatments, antimicrobial resistance, and a poorly conserved genomic core. Herein, we report 30 X-ray structures from a structure genomics pipeline spanning 13 years, representing 10.2% of the X-ray structures for this important pathogen.

4.
Nat Commun ; 14(1): 4940, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37643999

RESUMEN

The short-lived radionuclide aluminium-26 (26Al) isotope is a major heat source for early planetary melting. The aluminium-26 - magnesium-26 (26Al-26Mg) decay system also serves as a high-resolution relative chronometer. In both cases, however, it is critical to establish whether 26Al was homogeneously or heterogeneously distributed throughout the solar nebula. Here we report a precise lead-207 - lead-206 (207Pb-206Pb) isotopic age of 4565.56 ± 0.12 million years (Ma) for the andesitic achondrite Erg Chech 002. Our analysis, in conjunction with published 26Al-26Mg data, reveals that the initial 26Al/27Al in the source material of this achondrite was notably higher than in various other well-preserved and precisely dated achondrites. Here we demonstrate that the current data clearly indicate spatial heterogeneity of 26Al by a factor of 3-4 in the precursor molecular cloud or the protoplanetary disk of the Solar System, likely associated with the late infall of stellar materials with freshly synthesized radionuclides.

6.
Nat Commun ; 12(1): 5443, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521838

RESUMEN

Mantles of rocky planets are dominantly composed of olivine and its high-pressure polymorphs, according to seismic data of Earth's interior, the mineralogy of natural samples, and modelling results. The missing mantle problem represents the paucity of olivine-rich material among meteorite samples and remote observation of asteroids, given how common differentiated planetesimals were in the early Solar System. Here we report the discovery of new olivine-rich meteorites that have asteroidal origins and are related to V-type asteroids or vestoids. Northwest Africa 12217, 12319, and 12562 are dunites and lherzolite cumulates that have siderophile element abundances consistent with origins on highly differentiated asteroidal bodies that experienced core formation, and with trace element and oxygen and chromium isotopic compositions associated with the howardite-eucrite-diogenite meteorites. These meteorites represent a step towards the end of the shortage of olivine-rich material, allowing for full examination of differentiation processes acting on planetesimals in the earliest epoch of the Solar System.

7.
Meteorit Planet Sci ; 56(4): 844-893, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34295141

RESUMEN

The June 2, 2018, impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. 23 meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as a HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g/cm3, a relatively low albedo pv ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth-impacting orbit via the v6 resonance. The impact that ejected 2018 LA in an orbit towards Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U-Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb-Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin.

8.
Protein Sci ; 28(9): 1582-1593, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31301256

RESUMEN

Many Gram-negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon.


Asunto(s)
Bacterias Gramnegativas/patogenicidad , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/química , Bacterias Gramnegativas/metabolismo , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Virulencia
9.
Elife ; 72018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30015613

RESUMEN

Type III protein secretion systems (T3SS) are encoded by several pathogenic or symbiotic bacteria. The central component of this nanomachine is the needle complex. Here we show in a Salmonella Typhimurium T3SS that assembly of the needle filament of this structure requires OrgC, a protein encoded within the T3SS gene cluster. Absence of OrgC results in significantly reduced number of needle substructures but does not affect needle length. We show that OrgC is secreted by the T3SS and that exogenous addition of OrgC can complement a ∆orgC mutation. We also show that OrgC interacts with the needle filament subunit PrgI and accelerates its polymerization into filaments in vitro. The structure of OrgC shows a novel fold with a shared topology with a domain from flagellar capping proteins. These findings identify a novel component of T3SS and provide new insight into the assembly of the type III secretion machine.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/ultraestructura , Islas de CpG , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación/genética , Polimerizacion , Unión Proteica , Estructura Secundaria de Proteína , Salmonella typhimurium/citología , Salmonella typhimurium/ultraestructura , Sistemas de Secreción Tipo III/ultraestructura
10.
ChemMedChem ; 12(18): 1534-1541, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28750143

RESUMEN

Many pathogens such as Shigella and other bacteria assemble the type III secretion system (T3SS) nanoinjector to inject virulence proteins into their target cells to cause infectious diseases in humans. The rise of drug resistance among pathogens that rely on the T3SS for infectivity, plus the dearth of new antibiotics require alternative strategies in developing new antibiotics. The Shigella T3SS tip protein IpaD is an attractive target for developing anti-infectives because of its essential role in virulence and its exposure on the bacterial surface. Currently, the only known small molecules that bind to IpaD are bile salt sterols. In this study we identified four new small-molecule scaffolds that bind to IpaD, based on the methylquinoline, pyrrolidine-aniline, hydroxyindole, and morpholinoaniline scaffolds. NMR mapping revealed potential hotspots in IpaD for binding small molecules. These scaffolds can be used as building blocks in developing small-molecule inhibitors of IpaD that could lead to new anti-infectives.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Shigella/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Compuestos de Anilina/química , Compuestos de Anilina/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Espectroscopía de Resonancia Magnética , Unión Proteica , Quinolinas/química , Quinolinas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/química , Resonancia por Plasmón de Superficie , Sistemas de Secreción Tipo III
11.
Proteins ; 82(12): 3273-85, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25116453

RESUMEN

Pseudomonas aeruginosa, a Gram-negative pathogen uses a specialized set of Type III secretion system (T3SS) translocator proteins to establish virulence in the host cell. An understanding of the factors that govern translocation by the translocator protein-chaperone complex is thus of immense importance. In this work, experimental and computational techniques were used to probe into the structure of the major translocator protein PopB from P. aeruginosa and to identify the important regions involved in functioning of the translocator protein. This study reveals that the binding sites of the common chaperone PcrH, needed for maintenance of the translocator PopB within the bacterial cytoplasm, which are primarily localized within the N-terminal domain. However, disordered and flexible residues located both at the N- and C-terminal domains are also observed to be involved in association with the chaperone. This intrinsic disorderliness of the terminal domains is conserved for all the major T3SS translocator proteins and is functionally important to maintain the intrinsically disordered state of the translocators. Our experimental and computational analyses suggest that a "disorder-to-order" transition of PopB protein might take place upon PcrH binding. The long helical coiled-coil part of PopB protein perhaps helps in pore formation while the flexible apical region is involved in chaperone interaction. Thus, our computational model of translocator protein PopB and its binding analyses provide crucial functional insights into the T3SS translocation mechanism.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Pseudomonas aeruginosa/metabolismo , Secuencia de Aminoácidos , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos , Sitios de Unión , Biología Computacional , Secuencia Conservada , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Replegamiento Proteico , Pseudomonas aeruginosa/patogenicidad , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Propiedades de Superficie
12.
FEBS J ; 281(4): 1267-80, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24387107

RESUMEN

ExoT belongs to the family of type 3 secretion system (T3SS) effector toxins in Pseudomonas aeruginosa, known to be one of the major virulence determinant toxins that cause chronic and acute infections in immuno-compromised individuals, burn victims and cystic fibrosis patients. Here, we report the X-ray crystal structure of the amino terminal fragment of effector toxin ExoT, in complex with full-length homodimeric chaperone SpcS at 2.1 Å resolution. The full-length dimeric chaperone SpcS has the conserved α-ß-ß-ß-α-ß-ß-α fold of class I chaperones, the characteristic hydrophobic patches for binding effector proteins and a conserved polar cavity at the dimeric interface. The stable crystallized amino terminal fragment of ExoT consists of a chaperone binding domain and a membrane localization domain that wraps around the dimeric chaperone. Site-directed mutagenesis experiments and a molecular dynamics study complement each other in revealing Asn65, Phe67 and Trp88 as critical dimeric interfacial residues that can strongly influence the effector-chaperone interactions.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Pseudomonas aeruginosa/metabolismo , Simulación de Dinámica Molecular , Unión Proteica
13.
BMC Struct Biol ; 14: 5, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24460624

RESUMEN

BACKGROUND: PcrV is a hydrophilic translocator of type three secretion system (TTSS) and a structural component of the functional translocon. C-terminal helix of PcrV is essential for its oligomerization at the needle tip. Conformational changes within PcrV regulate the effector translocation. PcrG is a cytoplasmic regulator of TTSS and forms a high affinity complex with PcrV. C-terminal residues of PcrG control the effector secretion. RESULT: Both PcrV and PcrG-PcrV complex exhibit elongated conformation like their close homologs LcrV and LcrG-LcrV complex. The homology model of PcrV depicts a dumbbell shaped structure with N and C-terminal globular domains. The grip of the dumbbell is formed by two long helices (helix-7 and 12), which show high level of conservation both structurally and evolutionary. PcrG specifically protects a region of PcrV extending from helix-12 to helix-7, and encompassing the C-terminal globular domain. This fragment ∆PcrV(128-294) interacts with PcrG with high affinity, comparable to the wild type interaction. Deletion of N-terminal globular domain leads to the oligomerization of PcrV, but PcrG restores the monomeric state of PcrV by forming a heterodimeric complex. The N-terminal globular domain (∆PcrV(1-127)) does not interact with PcrG but maintains its monomeric state. Interaction affinities of various domains of PcrV with PcrG illustrates that helix-12 is the key mediator of PcrG-PcrV interaction, supported by helix-7. Bioinformatic analysis and study with our deletion mutant ∆PcrG(13-72) revealed that the first predicted intramolecular coiled-coil domain of PcrG contains the PcrV interaction site. However, 12 N-terminal amino acids of PcrG play an indirect role in PcrG-PcrV interaction, as their deletion causes 40-fold reduction in binding affinity and changes the kinetic parameters of interaction. ∆PcrG(13-72) fits within the groove formed between the two globular domains of PcrV, through hydrophobic interaction. CONCLUSION: PcrG interacts with PcrV through its intramolecular coiled-coil region and masks the domains responsible for oligomerization of PcrV at the needle tip. Also, PcrG could restore the monomeric state of oligomeric PcrV. Therefore, PcrG prevents the premature oligomerization of PcrV and maintains its functional state within the bacterial cytoplasm, which is a pre-requisite for formation of the functional translocon.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Bacterianos , Sitios de Unión , Dicroismo Circular , Evolución Molecular , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
14.
Protein J ; 31(5): 401-16, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22585368

RESUMEN

The TTSS encoding "translocator operon" of Pseudomonas aeruginosa consists of a major translocator protein PopB, minor translocator protein PopD and their cognate chaperone PcrH. Far-UV CD spectra and secondary structure prediction servers predict an α-helical model for PopB, PcrH and PopB-PcrH complex. PopB itself forms a single species of higher order oligomer (15 mer) as seen from AUC, but in complex with PcrH, both monomeric (1:1) and oligomeric form exist. PopB has large solvent-exposed hydrophobic patches and exists as an unordered molten globule in its native state, but on forming complex with PcrH it gets transformed into an ordered molten globule. Tryptophan fluorescence spectrum indicates that PopB interacts with the first TPR region of dimeric PcrH to form a stable PopB-PcrH complex that has a partial rigid structure with a large hydrodynamic radius and few tertiary contacts. The pH-dependent studies of PopB, PcrH and complex by ANS fluorescence, urea induced unfolding and thermal denaturation experiments prove that PcrH not only provides structural support to the ordered molten globule PopB in complex but also undergoes conformational change to assist PopB to pass through the needle complex of TTSS and form pores in the host cell membrane. ITC experiments show a strong affinity (K(d) ~ 0.37 µM) of PopB for PcrH at pH 7.8, which reduces to ~0.68 µM at pH 5.8. PcrH also loses its rigid tertiary structure at pH 5 and attains a molten globule conformation. This indicates that the decrease in pH releases PopB molecules and thus triggers the TTSS activation mechanism for the formation of a functional translocon.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Secuencia de Aminoácidos , Fluorescencia , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Desnaturalización Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , Desplegamiento Proteico , Infecciones por Pseudomonas/microbiología , Triptófano/química , Triptófano/metabolismo , Urea/metabolismo
15.
Mol Microbiol ; 65(2): 261-76, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17630969

RESUMEN

Polyphosphate kinase 1 (PPK1) helps bacteria to survive under stress. The ppk1 gene of Mycobacterium tuberculosis was overexpressed in Escherichia coli and characterized. Residues R230 and F176, predicted to be present in the head domain of PPK1, were identified as residues critical for polyphosphate (polyP)-synthesizing ability and dimerization of PPK1. A ppk1 knockout mutant of Mycobacterium smegmatis was compromised in its ability to survive under long-term hypoxia. The transcription of the rel gene and the synthesis of the stringent response regulator ppGpp were impaired in the mutant and restored after complementation with ppk1 of M. tuberculosis, providing evidence that PPK1 is required for the stringent response. We present evidence that PPK1 is likely required for mprAB-sigE-rel signalling. sigma(E) regulates the transcription of rel, and we hypothesize that under conditions of stress polyP acts as a preferred donor for MprB-mediated phosphorylation of MprA facilitating transcription of the sigE gene thereby leading finally to the enhancement of the transcription of rel in M. smegmatis and M. tuberculosis. Downregulation of ppk1 led to impaired survival of M. tuberculosis in macrophages. PolyP plays a central role in the stress response of mycobacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ligasas/metabolismo , Mycobacterium tuberculosis/enzimología , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Factor sigma/metabolismo , Anaerobiosis/genética , Proteínas Bacterianas/genética , Regulación hacia Abajo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Ligasas/genética , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/genética , Estrés Oxidativo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Mutación Puntual , Factor sigma/genética , Transducción de Señal , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...