Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 6256, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069192

RESUMEN

Nano plastics (NPs) have been a significant threat to human health and are known to cause premature endothelial senescence. Endothelial senescence is considered one of the primary risk factors contributing to numerous cardiovascular disorders. Recent studies have suggested that inhibition of sodium glucose co-transporter (SGLT2) ameliorates endothelial senescence and dysfunction. Therefore, our study intends to explore the role of SGLT2 in NPs-induced endothelial senescence and dysfunction. Porcine coronary artery and its endothelial cells were treated with NPs in the presence or absence of Enavogliflozin (ENA), a SGLT2 inhibitor and then SGLTs expression, senescence markers and vascular function were evaluated. NPs significantly up-regulated SGLT2 and ENA significantly decreased NPs-induced senescence-associated-ß-gal activity, cell-cycle arrest, and senescence markers p53 and p21 suggesting that inhibition of SGLT2 prevents NPs-induced endothelial senescence. In addition, ENA decreased the formation of reactive oxygen species with the downregulation of Nox2, and p22phox. Furthermore, SGLT2 inhibition also up regulated the endothelial nitric oxide synthase expression along with improving vascular function. In conclusion, premature endothelial senescence by NPs is, at least in part, associated with SGLT2 and it could be a potential therapeutic target for preventing and/or treating environmental pollutants-induced cardiovascular disorders mediated by endothelial senescence and dysfunction.


Asunto(s)
Células Endoteliales , Microplásticos , Animales , Senescencia Celular/fisiología , Células Endoteliales/metabolismo , Microplásticos/metabolismo , Estrés Oxidativo/fisiología , Transportador 2 de Sodio-Glucosa/genética , Transportador 2 de Sodio-Glucosa/metabolismo , Porcinos
2.
Antioxidants (Basel) ; 11(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35740065

RESUMEN

Calcific aortic valve stenosis (CAVS) is the most prevalent heart valvular disease worldwide and a slowly progressive disorder characterized by thickening of the aortic valve, calcification, and subsequent heart failure. Valvular calcification is an active cell regulation process in which valvular interstitial cells involve phenotypic conversion into osteoblasts/chondrocytes-like cells. The underlying pathophysiology is complicated, and there have been no pharmacological treatments for CAVS to date. Recent studies have suggested that an increase in oxidative stress is the major trigger of CAVS, and natural antioxidants could ameliorate the detrimental effects of reactive oxygen species in the pathogenesis of CAVS. It is imperative to review the current findings regarding the role of natural antioxidants in CAVS, as they can be a promising therapeutic approach for managing CAVS, a disorder currently without effective treatment. This review summarizes the current findings on molecular mechanisms associated with oxidative stress in the development of valvular calcification and discusses the protective roles of natural antioxidants in the prevention and treatment of CAVS.

3.
Environ Int ; 164: 107248, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35461096

RESUMEN

Global plastic use has increased rapidly, and environmental pollution associated with nanoplastics (NPs) has been a growing concern recently. However, the impact and biological mechanism of NPs on the cardiovascular system are not well characterized. This study aimed to assess the possibility that NPs exposure promotes premature endothelial cell (EC) senescence in porcine coronary artery ECs and, if so, to elucidate the underlying mechanism. Treatment of ECs with NPs promoted the acquisition of senescence markers, senescence-associated ß-galactosidase activity, and p53, p21, and p16 protein expression, resulting in the inhibition of proliferation. In addition, NPs impaired endothelium-dependent vasorelaxation associated with decreased endothelial nitric oxide synthase (eNOS) expression. NPs enhanced reactive oxygen species formation in ECs, and increased oxidative stress levels were associated with the induction of NADPH oxidases expression, followed by the subsequent downregulation of Sirt1 expression. The characteristics of EC senescence and dysfunction caused by NPs are prevented by an antioxidant (N-acetylcysteine), an NADPH oxidase inhibitor (apocynin), and a Sirt1 activator (resveratrol). These findings indicate that NPs induced premature EC senescence, at least in part, through the redox-sensitive eNOS/Sirt1 signaling pathway. This study suggested the effects and underlying mechanism of NPs on the cardiovascular system, which may provide pharmacological targets to prevent NPs-associated cardiovascular diseases.


Asunto(s)
Poliestirenos , Sirtuina 1 , Animales , Células Cultivadas , Senescencia Celular/fisiología , Endotelio/metabolismo , Microplásticos , NADPH Oxidasas/metabolismo , NADPH Oxidasas/farmacología , Estrés Oxidativo , Poliestirenos/metabolismo , Poliestirenos/farmacología , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...