Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260255

RESUMEN

SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.

2.
Front Genet ; 13: 906077, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928455

RESUMEN

Partial tetrasomy of distal 13q has a reported association with a variable phenotype including microphthalmia, ear abnormalities, hypotelorism, facial dysmorphisms, urogenital defects, pigmentation and skin defects, and severe learning difficulties. A wide range of mosaicism has been reported, which may, to some extent, account for the variable spectrum of observed phenotypes. We report here a pregnancy conceived using intrauterine insemination in a 32-year-old female with a history of infertility. Non-invasive prenatal screening (NIPS) was performed in the first trimester which reported an increased risk for trisomy 13. Follow-up cytogenetic workup using chorionic villus sampling (CVS) and amniotic fluid samples showed a mosaic karyotype with a small supernumerary marker chromosome (sSMC). Chromosomal microarray analysis (CMA) identified a mosaic 31.34 Mb terminal gain on chr13q31.1q34 showing the likely origin of the sSMC to distal chromosome 13q. Follow-up metaphase FISH testing suggested an inverted duplication rearrangement involving 13q31q34 in the marker chromosome and the presence of a neocentromere. At 21 months of age, the proband has a history of gross motor delay, hypotonia, left microphthalmia, strabismus, congenital anomaly of the right optic nerve, hemangiomas, and a tethered spinal cord. Postnatal chromosome analyses in buccal, peripheral blood, and spinal cord ligament tissues were consistent with the previous amniocentesis and CVS findings, and the degree of mosaicism varied from 25 to 80%. It is often challenging to pinpoint the chromosomal identity of sSMCs using banding cytogenetics. A combination of low-pass genome sequencing of cell-free DNA, chromosomal microarray, and FISH enabled the identification of the precise chromosomal rearrangement in this patient. This study adds to the growing list of clinically identified neocentric marker chromosomes and is the first described instance of partial tetrasomy 13q31q34 identified in a mosaic state prenatally. Since NIPS is now being routinely performed along with invasive testing for advanced maternal age, an increased prenatal detection rate for mosaic sSMCs in otherwise normal pregnancies is expected. Future studies investigating how neocentromeres mediate gene expression changes could help identify potential epigenetic targets as treatment options to rescue or reverse the phenotypes seen in patients with congenital neocentromeres.

3.
Genet Med ; 24(9): 1899-1908, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35616647

RESUMEN

PURPOSE: Neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and autism spectrum disorder (ASD), exhibit genetic and phenotypic heterogeneity, making them difficult to differentiate without a molecular diagnosis. The Clinical Genome Resource Intellectual Disability/Autism Gene Curation Expert Panel (GCEP) uses systematic curation to distinguish ID/ASD genes that are appropriate for clinical testing (ie, with substantial evidence supporting their relationship to disease) from those that are not. METHODS: Using the Clinical Genome Resource gene-disease validity curation framework, the ID/Autism GCEP classified genes frequently included on clinical ID/ASD testing panels as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. RESULTS: As of September 2021, 156 gene-disease pairs have been evaluated. Although most (75%) were determined to have definitive roles in NDDs, 22 (14%) genes evaluated had either Limited or Disputed evidence. Such genes are currently not recommended for use in clinical testing owing to the limited ability to assess the effect of identified variants. CONCLUSION: Our understanding of gene-disease relationships evolves over time; new relationships are discovered and previously-held conclusions may be questioned. Without periodic re-examination, inaccurate gene-disease claims may be perpetuated. The ID/Autism GCEP will continue to evaluate these claims to improve diagnosis and clinical care for NDDs.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-35022222

RESUMEN

McArdle disease is a debilitating glycogen storage disease with typical onset in childhood. Here, we describe a former competitive athlete with early adult-onset McArdle disease and a septuagenarian with a history of exercise intolerance since adolescence who was evaluated for proximal muscle weakness. Exome sequencing identified biallelic variants in the PYGM gene for both cases. The former athlete has the common, well-known pathogenic variant p.(Arg50Ter) in trans with a novel missense variant, p.(Asp694Glu). The second individual has a previously described homozygous missense variant, p.(Arg771Gln). Here, we describe the clinical course, enzyme-testing results using muscle tissue, and molecular findings for the individuals and add to the knowledge of the genotypic spectrum of this disorder.


Asunto(s)
Glucógeno Fosforilasa de Forma Muscular , Enfermedad del Almacenamiento de Glucógeno Tipo V , Adolescente , Adulto , Genotipo , Glucógeno Fosforilasa de Forma Muscular/genética , Enfermedad del Almacenamiento de Glucógeno Tipo V/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo V/genética , Homocigoto , Humanos , Secuenciación del Exoma
5.
Orphanet J Rare Dis ; 15(1): 320, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33187544

RESUMEN

BACKGROUND: Primary coenzyme Q10 deficiency is a rare disease that results in diverse and variable clinical manifestations. Nephropathy, myopathy and neurologic involvement are commonly associated, however retinopathy has also been observed with certain pathogenic variants of genes in the coenzyme Q biosynthesis pathway. In this report, we describe a novel presentation of the disease that includes nephropathy and retinopathy without neurological involvement, and which is the result of a compound heterozygous state arising from the inheritance of two recessive potentially pathogenic variants, previously not described. MATERIALS AND METHODS: Retrospective report, with complete ophthalmic examination, multimodal imaging, electroretinography, and whole exome sequencing performed on a family with three affected siblings. RESULTS: We show that affected individuals in the described family inherited two heterozygous variants of the COQ2 gene, resulting in a frameshift variant in one allele, and a predicted deleterious missense variant in the second allele (c.288dupC,p.(Ala97Argfs*56) and c.376C > G,p.(Arg126Gly) respectively). Electroretinography results were consistent with rod-cone dystrophy in the affected individuals. All affected individuals in the family exhibited the characteristic retinopathy as well as end-stage nephropathy, without evidence of any neurological involvement. CONCLUSIONS: We identified two novel compound heterozygous variants of the COQ2 gene that result in primary coenzyme Q deficiency. Targeted sequencing of coenzyme Q biosynthetic pathway genes may be useful in diagnosing oculorenal clinical presentations syndromes not explained by more well known syndromes (e.g., Senior-Loken and Bardet-Biedl syndromes).


Asunto(s)
Enfermedades Mitocondriales , Ubiquinona , Ataxia/genética , Humanos , Enfermedades Mitocondriales/genética , Debilidad Muscular , Mutación/genética , Linaje , Estudios Retrospectivos , Ubiquinona/deficiencia , Ubiquinona/genética
6.
N Engl J Med ; 383(12): 1107-1116, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32786180

RESUMEN

BACKGROUND: In the majority of cases, the cause of stillbirth remains unknown despite detailed clinical and laboratory evaluation. Approximately 10 to 20% of stillbirths are attributed to chromosomal abnormalities. However, the causal nature of single-nucleotide variants and small insertions and deletions in exomes has been understudied. METHODS: We generated exome sequencing data for 246 stillborn cases and followed established guidelines to identify causal variants in disease-associated genes. These genes included those that have been associated with stillbirth and strong candidate genes. We also evaluated the contribution of 18,653 genes in case-control analyses stratified according to the degree of depletion of functional variation (described here as "intolerance" to variation). RESULTS: We identified molecular diagnoses in 15 of 246 cases of stillbirth (6.1%) involving seven genes that have been implicated in stillbirth and six disease genes that are good candidates for phenotypic expansion. Among the cases we evaluated, we also found an enrichment of loss-of-function variants in genes that are intolerant to such variation in the human population (odds ratio, 2.15; 95% confidence interval [CI], 1.46 to 3.06). Loss-of-function variants in intolerant genes were concentrated in genes that have not been associated with human disease (odds ratio, 2.22; 95% CI, 1.41 to 3.34), findings that differ from those in two postnatal clinical populations that were also evaluated in this study. CONCLUSIONS: Our findings establish the diagnostic utility of clinical exome sequencing to evaluate the role of small genomic changes in stillbirth. The strength of the novel risk signal (as generated through the stratified analysis) was similar to that in known disease genes, which indicates that the genetic cause of stillbirth remains largely unknown. (Funded by the Institute for Genomic Medicine.).


Asunto(s)
Variación Genética , Mutación , Mortinato/genética , Femenino , Mutación del Sistema de Lectura , Humanos , Mutación con Pérdida de Función , Mutación Missense , Embarazo , Secuenciación del Exoma
7.
Genome Med ; 11(1): 30, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101064

RESUMEN

BACKGROUND: Exome sequencing (ES) has been successfully applied in clinical detection of single nucleotide variants (SNVs) and small indels. However, identification of copy number variants (CNVs) using ES data remains challenging. The purpose of this study is to understand the contribution of CNVs and copy neutral runs of homozygosity (ROH) in molecular diagnosis of patients referred for ES. METHODS: In a cohort of 11,020 consecutive ES patients, an Illumina SNP array analysis interrogating mostly coding SNPs was performed as a quality control (QC) measurement and for CNV/ROH detection. Among these patients, clinical chromosomal microarray analysis (CMA) was performed at Baylor Genetics (BG) on 3229 patients, either before, concurrently, or after ES. We retrospectively analyzed the findings from CMA and the QC array. RESULTS: The QC array can detect ~ 70% of pathogenic/likely pathogenic CNVs (PCNVs) detectable by CMA. Out of the 11,020 ES cases, the QC array identified PCNVs in 327 patients and uniparental disomy (UPD) disorder-related ROH in 10 patients. The overall PCNV/UPD detection rate was 5.9% in the 3229 ES patients who also had CMA at BG; PCNV/UPD detection rate was higher in concurrent ES and CMA than in ES with prior CMA (7.2% vs 4.6%). The PCNVs/UPD contributed to the molecular diagnoses in 17.4% (189/1089) of molecularly diagnosed ES cases with CMA and were estimated to contribute in 10.6% of all molecularly diagnosed ES cases. Dual diagnoses with both PCNVs and SNVs were detected in 38 patients. PCNVs affecting single recessive disorder genes in a compound heterozygous state with SNVs were detected in 4 patients, and homozygous deletions (mostly exonic deletions) were detected in 17 patients. A higher PCNV detection rate was observed for patients with syndromic phenotypes and/or cardiovascular abnormalities. CONCLUSIONS: Our clinical genomics study demonstrates that detection of PCNV/UPD through the QC array or CMA increases ES diagnostic rate, provides more precise molecular diagnosis for dominant as well as recessive traits, and enables more complete genetic diagnoses in patients with dual or multiple molecular diagnoses. Concurrent ES and CMA using an array with exonic coverage for disease genes enables most effective detection of both CNVs and SNVs and therefore is recommended especially in time-sensitive clinical situations.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma/métodos , Pruebas Genéticas/métodos , Análisis por Micromatrices/métodos , Aberraciones Cromosómicas , Femenino , Pruebas Genéticas/normas , Homocigoto , Humanos , Límite de Detección , Masculino , Análisis por Micromatrices/normas , Secuenciación del Exoma/normas
8.
Genome Med ; 10(1): 74, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30266093

RESUMEN

BACKGROUND: Exome sequencing is now being incorporated into clinical care for pediatric and adult populations, but its integration into prenatal diagnosis has been more limited. One reason for this is the paucity of information about the clinical utility of exome sequencing in the prenatal setting. METHODS: We retrospectively reviewed indications, results, time to results (turnaround time, TAT), and impact of exome results for 146 consecutive "fetal exomes" performed in a clinical diagnostic laboratory between March 2012 and November 2017. We define a fetal exome as one performed on a sample obtained from a fetus or a product of conception with at least one structural anomaly detected by prenatal imaging or autopsy. Statistical comparisons were performed using Fisher's exact test. RESULTS: Prenatal exome yielded an overall molecular diagnostic rate of 32% (n = 46/146). Of the 46 molecular diagnoses, 50% were autosomal dominant disorders (n = 23/46), 41% were autosomal recessive disorders (n = 19/46), and 9% were X-linked disorders (n = 4/46). The molecular diagnostic rate was highest for fetuses with anomalies affecting multiple organ systems and for fetuses with craniofacial anomalies. Out of 146 cases, a prenatal trio exome option designed for ongoing pregnancies was performed on 62 fetal specimens, resulting in a diagnostic yield of 35% with an average TAT of 14 days for initial reporting (excluding tissue culture time). The molecular diagnoses led to refined recurrence risk estimates, altered medical management, and informed reproductive planning for families. CONCLUSION: Exome sequencing is a useful diagnostic tool when fetal structural anomalies suggest a genetic etiology, but other standard prenatal genetic tests did not provide a diagnosis.


Asunto(s)
Secuenciación del Exoma , Feto/diagnóstico por imagen , Feto/patología , Enfermedades Genéticas Congénitas/diagnóstico por imagen , Enfermedades Genéticas Congénitas/genética , Ultrasonografía Prenatal , Familia , Humanos , Patrón de Herencia/genética , Fenotipo
9.
Am J Hum Genet ; 102(5): 985-994, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656860

RESUMEN

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.


Asunto(s)
Anomalías Múltiples/genética , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Variación Genética , Discapacidad Intelectual/genética , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Adolescente , Adulto , Línea Celular , Niño , Exones/genética , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Linaje , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo
10.
JAMA Pediatr ; 171(12): e173438, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28973083

RESUMEN

Importance: While congenital malformations and genetic diseases are a leading cause of early infant death, to our knowledge, the contribution of single-gene disorders in this group is undetermined. Objective: To determine the diagnostic yield and use of clinical exome sequencing in critically ill infants. Design, Setting, and Participants: Clinical exome sequencing was performed for 278 unrelated infants within the first 100 days of life who were admitted to Texas Children's Hospital in Houston, Texas, during a 5-year period between December 2011 and January 2017. Exome sequencing types included proband exome, trio exome, and critical trio exome, a rapid genomic assay for seriously ill infants. Main Outcomes and Measures: Indications for testing, diagnostic yield of clinical exome sequencing, turnaround time, molecular findings, patient age at diagnosis, and effect on medical management among a group of critically ill infants who were suspected to have genetic disorders. Results: The mean (SEM) age for infants participating in the study was 28.5 (1.7) days; of these, the mean (SEM) age was 29.0 (2.2) days for infants undergoing proband exome sequencing, 31.5 (3.9) days for trio exome, and 22.7 (3.9) days for critical trio exome. Clinical indications for exome sequencing included a range of medical concerns. Overall, a molecular diagnosis was achieved in 102 infants (36.7%) by clinical exome sequencing, with relatively low yield for cardiovascular abnormalities. The diagnosis affected medical management for 53 infants (52.0%) and had a substantial effect on informed redirection of care, initiation of new subspecialist care, medication/dietary modifications, and furthering life-saving procedures in select patients. Critical trio exome sequencing revealed a molecular diagnosis in 32 of 63 infants (50.8%) at a mean (SEM) of 33.1 (5.6) days of life with a mean (SEM) turnaround time of 13.0 (0.4) days. Clinical care was altered by the diagnosis in 23 of 32 patients (71.9%). The diagnostic yield, patient age at diagnosis, and medical effect in the group that underwent critical trio exome sequencing were significantly different compared with the group who underwent regular exome testing. For deceased infants (n = 81), genetic disorders were molecularly diagnosed in 39 (48.1%) by exome sequencing, with implications for recurrence risk counseling. Conclusions and Relevance: Exome sequencing is a powerful tool for the diagnostic evaluation of critically ill infants with suspected monogenic disorders in the neonatal and pediatric intensive care units and its use has a notable effect on clinical decision making.


Asunto(s)
Secuenciación del Exoma/métodos , Enfermedades Genéticas Congénitas/diagnóstico , Unidades de Cuidado Intensivo Pediátrico , Adulto , Cuidados Críticos/métodos , Manejo de la Enfermedad , Exoma , Asesoramiento Genético/métodos , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Humanos , Lactante , Cuidado del Lactante/métodos , Recién Nacido , Tiempo de Internación/estadística & datos numéricos , Estudios Retrospectivos , Texas
11.
Biol Open ; 5(11): 1595-1606, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27638768

RESUMEN

FOXF1 heterozygous point mutations and genomic deletions have been reported in newborns with the neonatally lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). However, no gain-of-function mutations in FOXF1 have been identified yet in any human disease conditions. To study the effects of FOXF1 overexpression in lung development, we generated a Foxf1 overexpression mouse model by knocking-in a Cre-inducible Foxf1 allele into the ROSA26 (R26) locus. The mice were phenotyped using micro-computed tomography (micro-CT), head-out plethysmography, ChIP-seq and transcriptome analyses, immunohistochemistry, and lung histopathology. Thirty-five percent of heterozygous R26-Lox-Stop-Lox (LSL)-Foxf1 embryonic day (E)15.5 embryos exhibit subcutaneous edema, hemorrhages and die perinatally when bred to Tie2-cre mice, which targets Foxf1 overexpression to endothelial and hematopoietic cells. Histopathological and micro-CT evaluations revealed that R26Foxf1; Tie2-cre embryos have immature lungs with a diminished vascular network. Neonates exhibited respiratory deficits verified by detailed plethysmography studies. ChIP-seq and transcriptome analyses in E18.5 lungs identified Sox11, Ghr, Ednrb, and Slit2 as potential downstream targets of FOXF1. Our study shows that overexpression of the highly dosage-sensitive Foxf1 impairs lung development and causes vascular abnormalities. This has important clinical implications when considering potential gene therapy approaches to treat disorders of FOXF1 abnormal dosage, such as ACDMPV.

12.
Hum Genet ; 135(5): 569-586, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27071622

RESUMEN

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV.


Asunto(s)
Genoma Humano , Impresión Genómica , Síndrome de Circulación Fetal Persistente/patología , Alveolos Pulmonares/anomalías , Venas Pulmonares/patología , Cromosomas Humanos Par 16/genética , Hibridación Genómica Comparativa , Femenino , Factores de Transcripción Forkhead/genética , Genes Letales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Masculino , Linaje , Síndrome de Circulación Fetal Persistente/genética , Alveolos Pulmonares/patología , Eliminación de Secuencia
13.
Curr Genomics ; 16(2): 107-16, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26085809

RESUMEN

The FOXF1 (Forkhead box F1) gene, located on chromosome 16q24.1 encodes a member of the FOX family of transcription factors characterized by a distinct forkhead DNA binding domain. FOXF1 plays an important role in epithelium-mesenchyme signaling, as a downstream target of Sonic hedgehog pathway. Heterozygous point mutations and genomic deletions involving FOXF1 have been reported in newborns with a lethal lung developmental disorder, Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV). In addition, genomic deletions upstream to FOXF1 identified in ACDMPV patients have revealed that FOXF1 expression is tightly regulated by distal tissue-specific enhancers. Interestingly, FOXF1 has been found to be incompletely paternally imprinted in human lungs; characterized genomic deletions arose de novo exclusively on maternal chromosome 16, with most of them being Alu-Alu mediated. Regulation of FOXF1 expression likely utilizes a combination of chromosomal looping, differential methylation of an upstream CpG island overlapping GLI transcription factor binding sites, and the function of lung-specific long non-coding RNAs (lncRNAs). FOXF1 knock-out mouse models demonstrated its critical role in mesoderm differentiation and in the development of pulmonary vasculature. Additionally, epigenetic inactivation of FOXF1 has been reported in breast and colorectal cancers, whereas overexpression of FOXF1 has been associated with a number of other human cancers, e.g. medulloblastoma and rhabdomyosarcoma. Constitutional duplications of FOXF1 have recently been reported in congenital intestinal malformations. Thus, understanding the genomic and epigenetic complexity at the FOXF1 locus will improve diagnosis, prognosis, and treatment of ACDMPV and other human disorders associated with FOXF1 alterations.

14.
BMC Med Genet ; 15: 128, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25472632

RESUMEN

BACKGROUND: Point mutations or genomic deletions of FOXF1 result in a lethal developmental lung disease Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins. However, the clinical consequences of the constitutively increased dosage of FOXF1 are unknown. METHODS: Copy-number variations and their parental origin were identified using a combination of array CGH, long-range PCR, DNA sequencing, and microsatellite analyses. Minisatellite sequences across different species were compared using a gready clustering algorithm and genome-wide analysis of the distribution of minisatellite sequences was performed using R statistical software. RESULTS: We report four unrelated families with 16q24.1 duplications encompassing entire FOXF1. In a 4-year-old boy with speech delay and a café-au-lait macule, we identified an ~15 kb 16q24.1 duplication inherited from the reportedly healthy father, in addition to a de novo ~1.09 Mb mosaic 17q11.2 NF1 deletion. In a 13-year-old patient with autism and mood disorder, we found an ~0.3 Mb duplication harboring FOXF1 and an ~0.5 Mb 16q23.3 duplication, both inherited from the father with bipolar disorder. In a 47-year old patient with pyloric stenosis, mesenterium commune, and aplasia of the appendix, we identified an ~0.4 Mb duplication in 16q24.1 encompassing 16 genes including FOXF1. The patient transmitted the duplication to her daughter, who presented with similar symptoms. In a fourth patient with speech and motor delay, and borderline intellectual disability, we identified an ~1.7 Mb FOXF1 duplication adjacent to a large minisatellite. This duplication has a complex structure and arose de novo on the maternal chromosome, likely as a result of a DNA replication error initiated by the adjacent large tandem repeat. Using bioinformatic and array CGH analyses of the minisatellite, we found a large variation of its size in several different species and individuals, demonstrating both its evolutionarily instability and population polymorphism. CONCLUSIONS: Our data indicate that constitutional duplication of FOXF1 in humans is not associated with any pediatric lung abnormalities. We propose that patients with gut malrotation, pyloric or duodenal stenosis, and gall bladder agenesis should be tested for FOXF1 alterations. We suggest that instability of minisatellites greater than 1 kb can lead to structural variation due to DNA replication errors.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 16/genética , Factores de Transcripción Forkhead/genética , Duplicación de Gen , Anomalías Múltiples/patología , Adolescente , Animales , Preescolar , Evolución Molecular , Femenino , Dosificación de Gen , Humanos , Masculino , Persona de Mediana Edad , Repeticiones de Minisatélite , Linaje
15.
Am J Med Genet A ; 164A(8): 2013-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24842713

RESUMEN

Position effects due to disruption of distant cis-regulatory regions have been reported for over 40 human gene loci; however, the underlying mechanisms of long-range gene regulation remain largely unknown. We report on two patients with alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) caused by overlapping genomic deletions that included a distant FOXF1 transcriptional enhancer mapping 0.3 Mb upstream to FOXF1 on 16q24.1. In one patient with atypical late-onset ACDMPV, a ∼1.5 Mb deletion removed the proximal 43% of this enhancer, leaving the lung-specific long non-coding RNA (lncRNA) gene LINC01081 intact. In the second patient with severe neonatal-onset ACDMPV, an overlapping ∼194 kb deletion disrupted LINC01081. Both deletions arose de novo on maternal copy of the chromosome 16, supporting the notion that FOXF1 is paternally imprinted in the human lungs. RNAi-mediated knock-down of LINC01081 in normal fetal lung fibroblasts showed that this lncRNA positively regulates FOXF1 transcript level, further indicating that decrease in LINC01081 expression can contribute to development of ACDMPV.


Asunto(s)
Elementos de Facilitación Genéticos , Factores de Transcripción Forkhead/genética , Síndrome de Circulación Fetal Persistente/genética , ARN Largo no Codificante/genética , Adulto , Biopsia , Hibridación Genómica Comparativa , Análisis Mutacional de ADN , Femenino , Expresión Génica , Humanos , Recién Nacido , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Interferencia de ARN , ARN Mensajero/genética , Radiografía , Eliminación de Secuencia
16.
PLoS One ; 9(4): e94390, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24722050

RESUMEN

Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV) is a developmental disorder of the lungs, primarily affecting their vasculature. FOXF1 haploinsufficiency due to heterozygous genomic deletions and point mutations have been reported in most patients with ACDMPV. The majority of mice with heterozygous loss-of-function of Foxf1 exhibit neonatal lethality with evidence of pulmonary hemorrhage in some of them. By comparing transcriptomes of human ACDMPV lungs with control lungs using expression arrays, we found that several genes and pathways involved in lung development, angiogenesis, and in pulmonary hypertension development, were deregulated. Similar transcriptional changes were found in lungs of the postnatal day 0.5 Foxf1+/- mice when compared to their wildtype littermate controls; 14 genes, COL15A1, COL18A1, COL6A2, ESM1, FSCN1, GRINA, IGFBP3, IL1B, MALL, NOS3, RASL11B, MATN2, PRKCDBP, and SIRPA, were found common to both ACDMPV and Foxf1 heterozygous lungs. Our results advance knowledge toward understanding of the molecular mechanism of ACDMPV, lung development, and its vasculature pathology. These data may also be useful for understanding etiologies of other lung disorders, e.g. pulmonary hypertension, bronchopulmonary dysplasia, or cancer.


Asunto(s)
Factores de Transcripción Forkhead/genética , Genes Letales , Pulmón/metabolismo , Síndrome de Circulación Fetal Persistente/genética , Alveolos Pulmonares/anomalías , Venas Pulmonares/metabolismo , Transcriptoma , Animales , Animales Recién Nacidos , Femenino , Factores de Transcripción Forkhead/deficiencia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Heterocigoto , Humanos , Recién Nacido , Pulmón/anomalías , Pulmón/irrigación sanguínea , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Noqueados , Síndrome de Circulación Fetal Persistente/metabolismo , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/metabolismo , Venas Pulmonares/anomalías
17.
Hum Mutat ; 34(6): 801-11, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23505205

RESUMEN

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare and lethal developmental disorder of the lung defined by a constellation of characteristic histopathological features. Nonpulmonary anomalies involving organs of gastrointestinal, cardiovascular, and genitourinary systems have been identified in approximately 80% of patients with ACD/MPV. We have collected DNA and pathological samples from more than 90 infants with ACD/MPV and their family members. Since the publication of our initial report of four point mutations and 10 deletions, we have identified an additional 38 novel nonsynonymous mutations of FOXF1 (nine nonsense, seven frameshift, one inframe deletion, 20 missense, and one no stop). This report represents an up to date list of all known FOXF1 mutations to the best of our knowledge. Majority of the cases are sporadic. We report four familial cases of which three show maternal inheritance, consistent with paternal imprinting of the gene. Twenty five mutations (60%) are located within the putative DNA-binding domain, indicating its plausible role in FOXF1 function. Five mutations map to the second exon. We identified two additional genic and eight genomic deletions upstream to FOXF1. These results corroborate and extend our previous observations and further establish involvement of FOXF1 in ACD/MPV and lung organogenesis.


Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Mutación , Síndrome de Circulación Fetal Persistente/genética , Síndrome de Circulación Fetal Persistente/metabolismo , Dominios y Motivos de Interacción de Proteínas/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Bases de Datos Genéticas , Femenino , Factores de Transcripción Forkhead/química , Dosificación de Gen , Orden Génico , Humanos , Lactante , Recién Nacido , Masculino , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Síndrome de Circulación Fetal Persistente/mortalidad , Síndrome de Circulación Fetal Persistente/patología , Alineación de Secuencia
18.
Genome Res ; 23(1): 23-33, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23034409

RESUMEN

An unanticipated and tremendous amount of the noncoding sequence of the human genome is transcribed. Long noncoding RNAs (lncRNAs) constitute a significant fraction of non-protein-coding transcripts; however, their functions remain enigmatic. We demonstrate that deletions of a small noncoding differentially methylated region at 16q24.1, including lncRNA genes, cause a lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), with parent-of-origin effects. We identify overlapping deletions 250 kb upstream of FOXF1 in nine patients with ACD/MPV that arose de novo specifically on the maternally inherited chromosome and delete lung-specific lncRNA genes. These deletions define a distant cis-regulatory region that harbors, besides lncRNA genes, also a differentially methylated CpG island, binds GLI2 depending on the methylation status of this CpG island, and physically interacts with and up-regulates the FOXF1 promoter. We suggest that lung-transcribed 16q24.1 lncRNAs may contribute to long-range regulation of FOXF1 by GLI2 and other transcription factors. Perturbation of lncRNA-mediated chromatin interactions may, in general, be responsible for position effect phenomena and potentially cause many disorders of human development.


Asunto(s)
Variaciones en el Número de Copia de ADN , Metilación de ADN , Síndrome de Circulación Fetal Persistente/genética , ARN Largo no Codificante/genética , Cromatina/metabolismo , Cromosomas Humanos Par 16/genética , Islas de CpG , Elementos de Facilitación Genéticos , Resultado Fatal , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Impresión Genómica , Células HEK293 , Humanos , Recién Nacido , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Nucleares/metabolismo , Síndrome de Circulación Fetal Persistente/diagnóstico , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Eliminación de Secuencia , Transcripción Genética , Proteína Gli2 con Dedos de Zinc
19.
Leuk Lymphoma ; 54(7): 1517-20, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23193950

RESUMEN

Aberrant expression of the B lymphoid marker, CD19, in acute myeloid leukemia (AML) has frequently been associated with t(8;21)(q22;q22). However, AML cases lacking t(8;21) may occasionally express CD19. We asked whether CD19 expression is restricted to the karyotypically abnormal leukemic cells in primary leukemia samples. We compared, by fluorescence in situ hybridization, CD19-positive and CD19-negative cells from nine patients with acute leukemia: three non-t(8;21) AML, three t(8;21) AML and three cases of acute lymphoblastic leukemia. There were no significant differences in karyotypic pattern between the CD19-positive and CD19-negative leukemic cells, raising the concern that therapeutically targeting CD19 for acute leukemia may not eradicate all malignant clones.


Asunto(s)
Antígenos CD19/metabolismo , Aberraciones Cromosómicas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Antígenos CD19/genética , Expresión Génica , Humanos , Inmunofenotipificación , Hibridación Fluorescente in Situ
20.
Hum Mol Genet ; 21(15): 3345-55, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22543972

RESUMEN

We have identified a rare small (~450 kb unique sequence) recurrent deletion in a previously linked attention-deficit hyperactivity disorder (ADHD) locus at 2q21.1 in five unrelated families with developmental delay (DD)/intellectual disability (ID), ADHD, epilepsy and other neurobehavioral abnormalities from 17 035 samples referred for clinical chromosomal microarray analysis. Additionally, a DECIPHER (http://decipher.sanger.ac.uk) patient 2311 was found to have the same deletion and presented with aggressive behavior. The deletion was not found in either six control groups consisting of 13 999 healthy individuals or in the DGV database. We have also identified reciprocal duplications in five unrelated families with autism, developmental delay (DD), seizures and ADHD. This genomic region is flanked by large, complex low-copy repeats (LCRs) with directly oriented subunits of ~109 kb in size that have 97.7% DNA sequence identity. We sequenced the deletion breakpoints within the directly oriented paralogous subunits of the flanking LCR clusters, demonstrating non-allelic homologous recombination as a mechanism of formation. The rearranged segment harbors five genes: GPR148, FAM123C, ARHGEF4, FAM168B and PLEKHB2. Expression of ARHGEF4 (Rho guanine nucleotide exchange factor 4) is restricted to the brain and may regulate the actin cytoskeletal network, cell morphology and migration, and neuronal function. GPR148 encodes a G-protein-coupled receptor protein expressed in the brain and testes. We suggest that small rare recurrent deletion of 2q21.1 is pathogenic for DD/ID, ADHD, epilepsy and other neurobehavioral abnormalities and, because of its small size, low frequency and more severe phenotype might have been missed in other previous genome-wide screening studies using single-nucleotide polymorphism analyses.


Asunto(s)
Encéfalo/metabolismo , Cromosomas Humanos Par 2/genética , Factores de Intercambio de Guanina Nucleótido/genética , Receptores Acoplados a Proteínas G/genética , Adolescente , Niño , Preescolar , Discapacidades del Desarrollo/genética , Epilepsia/genética , Femenino , Duplicación de Gen , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Duplicaciones Segmentarias en el Genoma , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...