Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38979241

RESUMEN

Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homolog of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Since MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.

2.
Mol Biol Cell ; 33(12): ar107, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35921168

RESUMEN

Fission of transport vesicles from endosomes is a crucial step in the recycling of lipids and receptors to the plasma membrane, but this process remains poorly understood. Although key components of the fission machinery, including the actin cytoskeleton and the ATPase Eps15 homology domain protein 1 (EHD1), have been implicated in endosomal fission, how this process is coordinately regulated is not known. We have identified the actin regulatory protein Coronin2A (CORO2A) as a novel EHD1 interaction partner. CORO2A localizes to stress fibers and actin microfilaments but also can be observed in partial overlap with EHD1 on endosomal structures. siRNA knockdown of CORO2A led to enlarged lamellae-like actin-rich protrusions, consistent with a role of other Coronin family proteins in attenuating actin-branching. Moreover, CORO2A depletion also caused a marked decrease in the internalization of clathrin-dependent cargo but had little impact on the uptake of clathrin-independent cargo, highlighting key differences in the role of branched actin for different modes of endocytosis. However, CORO2A was required for recycling of clathrin-independent cargo, and its depletion led to enlarged endosomes, supporting a role for CORO2A in the fission of endosomal vesicles. Our data support a novel role for CORO2A in coordinating endosomal fission and recycling with EHD1. [Media: see text].


Asunto(s)
Actinas , Proteínas de Transporte Vesicular , Actinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Clatrina/metabolismo , Endocitosis , Endosomas/metabolismo , Lípidos , ARN Interferente Pequeño/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
J Biol Chem ; 295(12): 3837-3850, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32041776

RESUMEN

Following endocytosis, receptors that are internalized to sorting endosomes are sorted to different pathways, in part by sorting nexin (SNX) proteins. Notably, SNX17 interacts with a multitude of receptors in a sequence-specific manner to regulate their recycling. However, the mechanisms by which SNX17-labeled vesicles that contain sorted receptors bud and undergo vesicular fission from the sorting endosomes remain elusive. Recent studies suggest that a dynamin-homolog, Eps15 homology domain protein 1, catalyzes fission and releases endosome-derived vesicles for recycling to the plasma membrane. However, the mechanism by which EHD1 is coupled to various receptors and regulates their recycling remains unknown. Here we sought to characterize the mechanism by which EHD1 couples with SNX17 to regulate recycling of SNX17-interacting receptors. We hypothesized that SNX17 couples receptors to the EHD1 fission machinery in mammalian cells. Coimmunoprecipitation experiments and in vitro assays provided evidence that EHD1 and SNX17 directly interact. We also found that inducing internalization of a SNX17 cargo receptor, low-density lipoprotein receptor-related protein 1 (LRP1), led to recruitment of cytoplasmic EHD1 to endosomal membranes. Moreover, surface rendering and quantification of overlap volumes indicated that SNX17 and EHD1 partially colocalize on endosomes and that this overlap further increases upon LRP1 internalization. Additionally, SNX17-containing endosomes were larger in EHD1-depleted cells than in WT cells, suggesting that EHD1 depletion impairs SNX17-mediated endosomal fission. Our findings help clarify our current understanding of endocytic trafficking, providing significant additional insight into the process of endosomal fission and connecting the sorting and fission machineries.


Asunto(s)
Endosomas/metabolismo , Nexinas de Clasificación/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Membrana Celular/metabolismo , Edición Génica , Células HeLa , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Mutagénesis Sitio-Dirigida , Células 3T3 NIH , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Nexinas de Clasificación/genética , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...