Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Prosthet Dent ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580583

RESUMEN

STATEMENT OF PROBLEM: The type of veneer preparation is often chosen according to the patient's tooth structure and occlusion. Taking biomechanics into account in this decision-making process provides the clinician with more technical information on how to improve the clinical longevity of restorations. However, biomechanical analyses of veneer preparation designs are sparse. PURPOSE: The purpose of this 3-dimensional (3D) finite element analysis with microcomputed tomography (µCT) data obtained from realistic models was to assess the influence of different preparations for ceramic and composite resin veneers on restoration and resin layer stress distribution. MATERIAL AND METHODS: Four replicas of a central incisor were printed and prepared for laminate veneers with 4 different incisal edge designs: shoulder (SH), palatal chamfer (PC), palatal chamfer and oblique fracture involving the distal angle (OF-PC), and palatal chamfer involving horizontal incisal fracture (IF-PC). After fabrication and cementation of the veneers, the restored replicas were assessed with µCT, and 3D finite element models were built. A 100-N load was applied on the palatal surface at 60 and 125 degrees relative to the longitudinal axis. Maximum principal stress and stress distribution on the veneers, cement layer, and tooth structure were calculated and analyzed. RESULTS: The SH preparation exhibited better stress distribution than the PC preparation, and the cement layer and the veneer were subjected to lower stress. The IF-PC preparation had better stress distribution than the OF-PC. The shoulder and IF-PC showed higher stress on laminate veneers, but lower stress on the cement layer. Ceramic veneers exhibited lower stress than composite resin veneers. CONCLUSIONS: The different incisal preparations for laminate veneers influenced stress distribution on restorations and on the resin cement layer. The shoulder type preparation showed better stress distribution and the composite resin veneers showed unfavorable results compared with the ceramic veneers.

2.
Ceram Int ; 46(16 Pt A): 26168-26175, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33716378

RESUMEN

The objective of this study is to investigate the magnitude of structural degradation of a monolithic translucent zirconia caused by clinically relevant grinding and polishing procedures, when associated or not with low temperature degradation (LTD), induced by accelerated hydrothermal aging using autoclave or thermocycling Ninety disks (Ø12 × 1 mm) were prepared from dental zirconia for monolithic restorations (Vipi Block Zirconn Translucent, Vipi). The specimens were divided into 3 groups (n = 30) according to surface treatment: As Sintered (untreated), Grind (diamond bur), Grind + Polish (diamond bur + polish); and then subdivided according to aging method (n = 10): Baseline (no aging), Autoclave (134°C, 2.2 kgf/cm2 pressure for 5 h), and Thermocycling (200,000 cycles, 5°C and 55°C, for 15 s each). Roughness, biaxial flexural strength and percentage of monoclinic phase were evaluated. Regarding surface treatment, the Grind group presented higher roughness and greater flexural strength compared to As Sintered group, while Grind + Polish showed intermediate roughness and flexural strength similar to Grind group. Aging had little effect on roughness, but yielded a significant reduction in flexural strength. Tetragonal to monoclinic phase transformation was observed in all groups, caused by both mechanical stresses (grinding and polishing) and LTD, which was similarly induced by the traditional autoclave method, as well as the thermocycling method The use of diamond burs to grind zirconia surface may result in deleterious effects on the surface quality of monolithic zirconia restorations, yet has a potential toughening effect by phase transformation. However, when zirconia is exposed to LTD, regardless of the surface treatment, degradation of the surface quality and strength are observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA