RESUMEN
Metastatic melanoma is a very aggressive form of cancer in both humans and dogs. Dogs primarily develop oral melanoma of mucosal origin. Although oral melanoma in humans is rare, both diseases are highly aggressive with frequent metastases. This disease represents a "One Health" opportunity to improve molecular and mechanistic understanding of melanoma progression. Accumulating evidence suggests that cyclooxygenase-2 (COX-2) may play a critical role in the malignant behaviour of melanoma. In this study we analysed 85 histologically confirmed melanomas from canine patients and showed that COX-2 is overexpressed in both oral and cutaneous melanomas and that COX-2 expression correlates with established markers of poor prognosis. To determine the role of COX-2 in melanoma we developed two melanoma cell lines with stable integration of an inducible doxycycline-regulated expression vector containing a COX-2 targeted micro-RNA (miRNA). Using this system, we showed that cellular proliferation, migration and invasion are COX-2 dependent, establishing a direct relationship between COX-2 expression and malignant behaviour in canine melanoma. We have also developed a powerful molecular tool to aid further dissection of the mechanisms by which COX-2 regulates melanoma progression.
RESUMEN
Genetic modification of human embryonic stem cells (hESCs) will be an essential tool to allow full exploitation of these cells in regenerative medicine and in the study of hESC biology. Here we report multiple sequential modifications of an endogenous gene (hprt) in hESCs. A selectable marker flanked by heterospecific lox sites was first introduced by homologous recombination (HR) into the hprt gene. In a subsequent step, exchange of the selectable marker with another cassette was achieved by recombinase-mediated cassette exchange (RMCE). We show that 100% of the recovered clones were the result of RMCE using a promoter trap strategy at the hprt locus. hprt-targeted H1 cells maintained a diploid karyotype and expressed hESC surface markers before and after RMCE. Finally, we report a double replacement strategy using two sequential gene targeting steps resulting in the targeted correction of an hprt-mutated hESC line.
Asunto(s)
Células Madre Embrionarias/metabolismo , Marcación de Gen/métodos , Ingeniería Genética/métodos , Hipoxantina Fosforribosiltransferasa/genética , Recombinasas/metabolismo , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Humanos , Hipoxantina Fosforribosiltransferasa/metabolismo , Recombinación Genética , TransfecciónRESUMEN
Primary mouse brain cells were cultured with HPRT (hypoxanthine phosphoribosyl transferase)-deficient ES (embryonic stem) cells to see if the ES cells could provide cues sufficient to reprogram a pluripotential state. After 5 days of coculture, HPRT-deficient ES cells were killed by selection in HAT (hypoxanthine, aminopterin, thymidine) medium. We observed islands of HAT-resistant ES-like cells surrounded by differentiated cells. Cell lines generated from three such "islands" proved to be spontaneous, pluripotential ES-neural hybrids, and gave rise to a chimera following blastocyst injection. Re-expression of the ES-specific gene Foxd3 from somatic-derived chromosomes suggested that the somatic nucleus had been reprogrammed. Our results raise the intriguing possibility that ASCs shown to contribute to multiple tissues in blastocyst-injection studies may not contribute as a result of pluripotency. Instead contributions may arise from spontaneous fusion events in which phenotype is determined by either cytoplasmic dominance, nuclear reprogramming, or both.