Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Haematologica ; 97(4): 491-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22180429

RESUMEN

BACKGROUND: Although mobilization of hematopoietic stem cells and hematopoietic progenitor cells can be achieved with a combination of granulocyte colony-stimulating factor and plerixafor (AMD3100), improving approaches for hematopoietic progenitor cell mobilization is clinically important. DESIGN AND METHODS: Heparan sulfate proteoglycans are ubiquitous macromolecules associated with the extracellular matrix that regulates biology of hematopoietic stem cells. We studied the effects of a new family of synthetic oligosaccharides mimicking heparan sulfate on hematopoietic stem cell mobilization. These oligosaccharides were administered intravenously alone or in combination with granulocyte colony-stimulating factor and/or AMD3100 in mice. Mobilized hematopoietic cells were counted and phenotyped at different times and the ability of mobilized hematopoietic stem cells to reconstitute long-term hematopoiesis was determined by competitive transplantation into syngenic lethally irradiated mice followed by secondary transplantation. RESULTS: Mimetics of heparan sulfate induced rapid mobilization of B-lymphocytes, T-lymphocytes, hematopoietic stem cells and hematopoietic progenitor cells. They increased the mobilization of hematopoietic stem cells and hematopoietic progenitor cells more than 3-fold when added to the granulocyte colony-stimulating factor/AMD3100 association. Hematopoietic stem cells mobilized by mimetics of heparan sulfate or by the granulocyte colony-stimulating factor/AMD3100/mimetics association were as effective as hematopoietic stem cells mobilized by the granulocyte colony-stimulating factor/AMD3100 association for primary and secondary hematopoietic reconstitution of lethally irradiated mice. CONCLUSIONS: This new family of mobilizing agents could alone or in combination with granulocyte colony-stimulating factor and/or AMD3100 mobilize a high number of hematopoietic stem cells that were able to maintain long-term hematopoiesis. These results strengthen the role of heparan sulfates in the retention of hematopoietic stem cells in bone marrow and support the use of small glyco-drugs based on heparan sulfate in combination with granulocyte colony-stimulating factor and AMD3100 to improve high stem cell mobilization, particularly in a prospect of use in human therapeutics.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/farmacología , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas/efectos de los fármacos , Heparitina Sulfato/farmacología , Compuestos Heterocíclicos/farmacología , Animales , Bencilaminas , Ciclamas , Sinergismo Farmacológico , Hematopoyesis/efectos de los fármacos , Hematopoyesis/fisiología , Trasplante de Células Madre Hematopoyéticas , Heparitina Sulfato/síntesis química , Cinética , Ratones , Ratones Endogámicos C57BL
2.
Int J Radiat Biol ; 87(6): 556-70, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21473673

RESUMEN

PURPOSE: In vivo effects of tritium contamination are poorly documented. Here, we study the effects of tritiated Thymidine ([(3)H] Thymidine) or tritiated water (HTO) contamination on the biological properties of hematopoietic stem cells (HSC). MATERIALS AND METHODS: Mouse HSC were contaminated with concentrations of [(3)H] Thymidine ranging from 0.37-37.03 kBq/ml or of HTO ranging from 5-50 kBq/ml. The biological properties of contaminated HSC were studied in vitro after HTO contamination and in vitro and in vivo after [(3)H] Thymidine contamination. RESULTS: Proliferation, viability and double-strand breaks were dependent on [(3)H] Thymidine or HTO concentrations used for contamination but in vitro myeloid differentiation of HSC was not affected by [(3)H] Thymidine contamination. [(3)H] Thymidine contaminated HSC showed a compromised long-term capacity of hematopoietic reconstitution and competition experiments showed an up to two-fold decreased capacity of contaminated HSC to reconstitute hematopoiesis. These defects were not due to impaired homing in bone marrow but to an initial decreased proliferation rate of HSC. CONCLUSION: These results indicate that contaminations of HSC with doses of tritium that do not result in cell death, induce short-term effects on proliferation and cell cycle and long-term effects on hematopoietic reconstitution capacity of contaminated HSC.


Asunto(s)
Hematopoyesis/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , Tritio/farmacología , Animales , Apoptosis , Autorradiografía/métodos , Médula Ósea/metabolismo , Trasplante de Médula Ósea , Ciclo Celular , Proliferación Celular , Citometría de Flujo/métodos , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre
3.
J Invest Dermatol ; 128(6): 1545-53, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18239618

RESUMEN

High-mobility group box 1 (HMGB1) protein is a multifunctional cytokine involved in inflammatory responses and tissue repair. In this study, it was examined whether HMGB1 plays a role in skin wound repair both in normoglycemic and diabetic mice. HMGB1 was detected in the nucleus of skin cells, and accumulated in the cytoplasm of epidermal cells in the wounded skin. Diabetic human and mouse skin showed more reduced HMGB1 levels than their normoglycemic counterparts. Topical application of HMGB1 to the wounds of diabetic mice enhanced arteriole density, granulation tissue deposition, and accelerated wound healing. In contrast, HMGB1 had no effect in normoglycemic mouse skin wounds, where endogenous HMGB1 levels may be adequate for optimal wound closure. Accordingly, inhibition of endogenous HMGB1 impaired wound healing in normal mice but had no effect in diabetic mice. Finally, HMGB1 had a chemotactic effect on skin fibroblasts and keratinoyctes in vitro. In conclusion, lower HMGB1 levels in diabetic skin may play an important role in impaired wound healing and this defect may be overcome by the topical application of HMGB1.


Asunto(s)
Regulación de la Expresión Génica , Proteína HMGB1/biosíntesis , Proteína HMGB1/fisiología , Cicatrización de Heridas , Animales , Quimiotaxis , Citoplasma/metabolismo , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/terapia , Células Epidérmicas , Fibroblastos/metabolismo , Humanos , Inflamación , Queratinocitos/citología , Ratones , Modelos Biológicos , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...