Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
1.
Arch Biochem Biophys ; 758: 110083, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969196

RESUMEN

Fibromyalgia (FMS) is a persistent syndrome marked by widespread musculoskeletal pain and behavioural symptoms. Given the hypothesis linking FMS aetiology to mitochondrial dysfunction and oxidative stress, we examined the biochemical correlation among these factors by studying specific proteins associated with mitochondrial homeostasis in muscle. Additionally, this study investigated the role of Boswellia serrata gum resin extract (BS), known for its various functions, including the potent induction of antioxidant enzymes, in determining protective or reparative mechanisms in the muscle cells. Sprague-Dawley rats were injected with reserpine to induce FMS. These animals exhibited moderate changes in hind limb skeletal muscles, experiencing mobility difficulties. Additionally, there were noteworthy morphological and ultrastructural alterations, along with the expression of myogenin, mitochondrial enzymes and oxidative stress markers in the gastrocnemius muscle. Interestingly, BS demonstrated a reduction in spontaneous motor activity difficulties. Moreover, BS showed a positive impact on musculoskeletal morphostructural aspects, as well as a decrease in oxidative stress and mitochondrial alterations. In particular, BS restored the mRNA expression of citrate synthase and cytochrome-c oxidase subunit II and the activity of electron transfer chain complexes. BS also influenced mitochondrial biogenesis, upregulating PGC-1α expression and the related transcription factors (Nrf1, Tfam, Nrf2, FOXO3a, SIRT3, GCLC, NQO1, SOD2 and GPx4), oxidative stress (lipid peroxidation, GSH levels and GSH-Px activity) and mitochondrial dynamics and function (Mnf2 expression and CoQ10 levels). Overall, this study underlined the key role of the mitochondrial alteration in FMS and that BS had a very high antioxidant effect in these organelles and also in the cells.


Asunto(s)
Fibromialgia , Músculo Esquelético , Estrés Oxidativo , Ratas Sprague-Dawley , Fibromialgia/metabolismo , Fibromialgia/inducido químicamente , Fibromialgia/patología , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Ratas , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Masculino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Antioxidantes/metabolismo
2.
Mech Ageing Dev ; 220: 111960, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971236

RESUMEN

Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.


Asunto(s)
Hormesis , Humanos , Animales , Envejecimiento Saludable/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico
3.
Environ Toxicol Pharmacol ; 109: 104496, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959819

RESUMEN

Endocrine disruptors (EDs) pose significant risks to human and environmental health, with potential implications for neurotoxicity. This study investigates the synergistic neurotoxic effects of perfluorooctane sulfonate (PFOS) and glyphosate (GLY), two ubiquitous EDs, using SHSY5Y neuronal and C6 astrocytic cell lines. While individual exposures to PFOS and glyphosate at non-toxic concentrations did not induce significant changes, their combination resulted in a marked increase in oxidative stress and neuroinflammatory responses. Specifically, the co-exposure led to elevated levels of interleukin-6, tumor necrosis factor alpha, and interferon gamma, along with reduced interleukin-10 expression, indicative of heightened neuroinflammatory processes. These findings underscore the importance of considering the synergistic interactions of EDs in assessing neurotoxic risks and highlight the urgent need for further research to mitigate the adverse effects of these compounds on neurological health.


Asunto(s)
Ácidos Alcanesulfónicos , Disruptores Endocrinos , Fluorocarburos , Glicina , Glifosato , Glicina/análogos & derivados , Glicina/toxicidad , Fluorocarburos/toxicidad , Disruptores Endocrinos/toxicidad , Humanos , Ácidos Alcanesulfónicos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Línea Celular Tumoral , Línea Celular , Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Herbicidas/toxicidad , Citocinas/metabolismo , Supervivencia Celular/efectos de los fármacos , Ratas
4.
Biochim Biophys Acta Mol Basis Dis ; : 167301, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38878832

RESUMEN

A critical role for mitochondrial dysfunction has been shown in the pathogenesis of fibromyalgia. It is a chronic pain syndrome characterized by neuroinflammation and impaired oxidative balance in the central nervous system. Boswellia serrata (BS), a natural polyphenol, is a well-known able to influence the mitochondrial metabolism. The objective of this study was to evaluate the mitochondrial dysfunction and biogenesis in fibromyalgia and their modulation by BS. To induce the model reserpine (1 mg/Kg) was subcutaneously administered for three consecutive days and BS (100 mg/Kg) was given orally for twenty-one days. BS reduced pain like behaviors in reserpine-injected rats and the astrocytes activation in the dorsal horn of the spinal cord and prefrontal cortex that are recognized as key regions associated with the neuropathic pain. Vulnerability to neuroinflammation and impaired neuronal plasticity have been described as consequences of mitochondrial dysfunction. BS administration increased PGC-1α expression in the nucleus of spinal cord and brain tissues, promoting the expression of regulatory genes for mitochondrial biogenesis (NRF-1, Tfam and UCP2) and cellular antioxidant defence mechanisms (catalase, SOD2 and Prdx 3). According with these data BS reduced lipid peroxidation and the GSSG/GSH ratio and increased SOD activity in the same tissues. Our results also showed that BS administration mitigates cytochrome-c leakage by promoting mitochondrial function and supported the movement of PGC-1α protein into the nucleus restoring the quality control of mitochondria. Additionally, BS reduced Drp1 and Fis1, preventing both mitochondrial fission and cell death, and increased the expression of Mfn2 protein, facilitating mitochondrial fusion. Overall, our results showed important mitochondrial dysfunction in central nervous system in fibromyalgia syndrome and the role of BS in restoring mitochondrial dynamics.

14.
Neurochem Int ; 174: 105681, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38341035

RESUMEN

Vinclozolin (VCZ) is a widely used fungicide in agriculture, especially in fruits and wine. Various studies have detailed the effects of VCZ exposure on different organs, but no information is available on its effects on brain tissues. This paper investigated the effects of VCZ exposure on the oxidative stress and mitochondrial dysfunction in brain tissue. C57BL/6 mice were exposed to VCZ (100 mg/kg) by oral gavage for 28 days. Mitochondrial homeostasis, often known as mitochondrial quality control, involves a range of processes, including mitochondrial biogenesis, mitochondrial fusion and fission, mitophagy and autophagy. VCZ administration modified the mRNA expression levels of Sirt1, Sirt3, PGC-1α, TFAM, Nrf1, VDAC-1 and Cyt c in brain tissue, as compared to control animals (CTR). The analyses also showed increased oxidative stress, in particular VCZ administration reduced SOD and CAT activities and GSH levels while increased T-AOC levels and lipid peroxidation. Additionally, brain tissues from VCZ group showed DNA oxidation (increased PARP-1 immunostaining) and apoptosis (increased TUNEL+ cells, increased expression of Bax mRNA level and reduced Bcl-2 levels). Western blot and immunohistochemical analyses showed increased mitophagic pathway with the accumulation of PINK1 and Parkin in mitochondria. Additionally, autophagic pathway was also increased with the increased expression and colocalization of LC3 with Neun and GFAP. Overall, this study showed that chronic VCZ exposure impaired mitochondrial homeostasis and increased oxidative stress in brain tissues.


Asunto(s)
Enfermedades Mitocondriales , Oxazoles , Estrés Oxidativo , Ratones , Animales , Ratones Endogámicos C57BL , Encéfalo , ARN Mensajero
17.
ACS Med Chem Lett ; 14(12): 1891-1892, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116440

RESUMEN

[This corrects the article DOI: 10.1021/acsmedchemlett.2c00166.].

19.
Ageing Res Rev ; 91: 102074, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37709054

RESUMEN

This commentary provides a novel synthesis of how biological systems adapt to a broad spectrum of environmental and age-related stresses that are underlying causes of numerous degenerative diseases and debilitating effects of aging. It proposes that the most fundamental, evolutionary-based integrative strategy to sustain and protect health is based on the concept of hormesis. This concept integrates anti-oxidant, anti-inflammatory and cellular repair responses at all levels of biological organization (i.e., cell, organ and organism) within the framework of biphasic dose responses that describe the quantitative limits of biological plasticity in all cells and organisms from bacteria and plants to humans. A major feature of the hormetic concept is that low levels of biological, chemical, physical and psychological stress upregulate adaptive responses that not only precondition, repair and restore normal functions to damaged tissues/organs but modestly overcompensate, reducing ongoing background damage, thereby enhancing health beyond that in control groups, lacking the low level "beneficial" stress. Higher doses of such stress often become counterproductive and eventually harmful. Hormesis is active throughout the life-cycle and can be diminished by aging processes affecting the onset and severity of debilitating conditions/diseases, especially in elderly subjects. The most significant feature of the hormetic dose response is that the limits of biological plasticity for adaptive processes are less than twice that of control group responses, with most, at maximum, being 30-60 % greater than control group values. Yet, these modest increases can make the difference between health or disease and living or dying. The quantitative features of these adaptive hormetic dose responses are also independent of mechanism. These features of the hormetic dose response determine the capacity to which systems can adapt/be protected, the extent to which biological performance (e.g., memory, resistance to injury/disease, wound healing, hair growth or lifespan) can be enhanced/extended and the extent to which synergistic interactions may occur. Hormesis defines the quantitative rules within which adaptive processes operate and is central to evolution and biology and should become transformational for experimental concepts and study design strategies, public health practices and a vast range of therapeutic strategies and interventions.


Asunto(s)
Hormesis , Longevidad , Humanos , Anciano , Hormesis/fisiología , Envejecimiento/fisiología , Adaptación Fisiológica , Antioxidantes
20.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37627502

RESUMEN

Myocarditis is an inflammatory and oxidative disorder characterized by immune cell recruitment in the damaged tissue and organ dysfunction. In this paper, we evaluated the molecular pathways involved in myocarditis using a natural compound, Coriolus versicolor, in an experimental model of autoimmune myocarditis (EAM). Animals were immunized with an emulsion of pig cardiac myosin and complete Freund's adjuvant supplemented with mycobacterium tuberculosis; thereafter, Coriolus versicolor (200 mg/Kg) was orally administered for 21 days. At the end of the experiment, blood pressure and heart rate measurements were recorded and the body and heart weights as well. From the molecular point of view, the Coriolus versicolor administration reduced the activation of the TLR4/NF-κB pathway and the levels of pro-inflammatory cytokines (INF-γ, TNF-α, IL-6, IL-17, and IL-2) and restored the levels of anti-inflammatory cytokines (IL-10). These anti-inflammatory effects were accompanied with a reduced lipid peroxidation and nitrite levels and restored the antioxidant enzyme activities (SOD and CAT) and GSH levels. Additionally, it reduced the histological injury and the immune cell recruitment (CD4+ and CD68+ cells). Moreover, we observed an antiapoptotic activity in both intrinsic (Fas/FasL/caspase-3) and extrinsic (Bax/Bcl-2) pathways. Overall, our data showed that Coriolus versicolor administration modulates the TLR4/NF-κB signaling in EAM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...