Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731819

RESUMEN

TP53 mutations are prevalent in various cancers, yet the complexity of apoptotic pathway deregulation suggests the involvement of additional factors. HOPS/TMUB1 is known to extend the half-life of p53 under normal and stress conditions, implying a regulatory function. This study investigates, for the first time, the potential modulatory role of the ubiquitin-like-protein HOPS/TMUB1 in p53-mutants. A comprehensive analysis of apoptosis in the most frequent p53-mutants, R175, R248, and R273, in SKBR3, MIA PaCa2, and H1975 cells indicates that the overexpression of HOPS induces apoptosis at least equivalent to that caused by DNA damage. Immunoprecipitation assays confirm HOPS binding to p53-mutant forms. The interaction of HOPS/TMUB1 with p53-mutants strengthens its effect on the apoptotic cascade, showing a context-dependent gain or loss of function. Gene expression analysis of the MYC and TP63 genes shows that H1975 exhibit a gain-of-function profile, while SKBR3 promote apoptosis in a TP63-dependent manner. The TCGA data further corroborate HOPS/TMUB1's positive correlation with apoptotic genes BAX, BBC3, and NOXA1, underscoring its relevance in patient samples. Notably, singular TP53 mutations inadequately explain pathway dysregulation, emphasizing the need to explore additional contributing factors. These findings illuminate the intricate interplay among TP53 mutations, HOPS/TMUB1, and apoptotic pathways, providing valuable insights for targeted cancer interventions.


Asunto(s)
Apoptosis , Mutación , Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Apoptosis/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Factores de Transcripción
2.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36674692

RESUMEN

The physiological importance of the liver is demonstrated by its unique and essential ability to regenerate following extensive injuries affecting its function. By regenerating, the liver reacts to hepatic damage and thus enables homeostasis to be restored. The aim of this review is to add new findings that integrate the regenerative pathway to the current knowledge. An optimal regeneration is achieved through the integration of two main pathways: IL-6/JAK/STAT3, which promotes hepatocyte proliferation, and PI3K/PDK1/Akt, which in turn enhances cell growth. Proliferation and cell growth are events that must be balanced during the three phases of the regenerative process: initiation, proliferation and termination. Achieving the correct liver/body weight ratio is ensured by several pathways as extracellular matrix signalling, apoptosis through caspase-3 activation, and molecules including transforming growth factor-beta, and cyclic adenosine monophosphate. The actors involved in the regenerative process are numerous and many of them are also pivotal players in both the immune and non-immune inflammatory process, that is observed in the early stages of hepatic regeneration. Balance of Th17/Treg is important in liver inflammatory process outcomes. Knowledge of liver regeneration will allow a more detailed characterisation of the molecular mechanisms that are crucial in the interplay between proliferation and inflammation.


Asunto(s)
Hepatopatías , Regeneración Hepática , Humanos , Regeneración Hepática/fisiología , Hepatocitos/metabolismo , Hígado/metabolismo , Hepatopatías/metabolismo , Transducción de Señal , Proliferación Celular
3.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430960

RESUMEN

A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.


Asunto(s)
Procesamiento Proteico-Postraduccional , Ubiquitina , Humanos , Ubiquitinación , Ubiquitina/metabolismo , Proteínas/metabolismo , Homeostasis
4.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281239

RESUMEN

HOPS is a ubiquitin-like protein implicated in many aspects of cellular function including the regulation of mitotic activity, proliferation, and cellular stress responses. In this study, we focused on the complex relationship between HOPS and the tumor suppressor p53, investigating both transcriptional and non-transcriptional p53 responses. Here, we demonstrated that Hops heterozygous mice and mouse embryonic fibroblasts exhibit an impaired DNA-damage response to etoposide-induced double-strand breaks when compared to wild-type genes. Specifically, alterations in HOPS levels caused significant defects in the induction of apoptosis, including a reduction in p53 protein level and percentage of apoptotic cells. We also analyzed the effect of reduced HOPS levels on the DNA-damage response by examining the transcript profiles of p53-dependent genes, showing a suggestive deregulation of the mRNA levels for a number of p53-dependent genes. Taken together, these results show an interesting haploinsufficiency effect mediated by Hops monoallelic deletion, which appears to be enough to destabilize the p53 protein and its functions. Finally, these data indicate a novel role for Hops as a tumor-suppressor gene in DNA damage repair in mammalian cells.


Asunto(s)
Apoptosis , Reparación del ADN , Haploinsuficiencia , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Daño del ADN , Femenino , Heterocigoto , Masculino , Ratones
5.
Biosci Rep ; 41(2)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33543240

RESUMEN

Transparency represents the functional phenotype of eye lens. A number of defined steps including quiescence, proliferation, migration and cell differentiation culminates in cell elongation and organelle degradation, allowing the light to reach the retina. HOPS (Hepatocyte Odd Protein Shuttling)/TMUB1 (Trans Membrane Ubiquitin-like containing protein 1) is a nucleo-cytoplasmic shuttling protein, highly expressed both in vivo and in vitro proliferating systems, bearing a ubiquitin-like domain. The present study shows HOPS expression during the phases of lens cell proliferation and fiber differentiation, and its localisation in lens compartments. In lens, HOPS localises mainly in the nucleus of central epithelial cells. During mitosis, HOPS/TMUB1 shuttles to the cytoplasm and returns to the nucleus at the end of mitosis. The differentiating cells share distinct HOPS/TMUB1 localisation in transitional zone depending on the differentiation phases. HOPS/TMUB1 is observed in lens cortex and nucleus. Here, it is attached to fibers, having a structural function with crystallin proteins, probably acting in the ubiquitin-proteasome system.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cristalino/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Compartimento Celular , Células Cultivadas , Factor de Crecimiento Epidérmico/administración & dosificación , Cristalino/citología , Ratones , Ratones Endogámicos , Transducción de Señal , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA