Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(39): 10847-10860, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37829016

RESUMEN

Despite the myriad Cu-catalyzed nitrene transfer methodologies to form new C-N bonds (e.g., amination, aziridination), the critical reaction intermediates have largely eluded direct characterization due to their inherent reactivity. Herein, we report the synthesis of dipyrrin-supported Cu nitrenoid adducts, investigate their spectroscopic features, and probe their nitrene transfer chemistry through detailed mechanistic analyses. Treatment of the dipyrrin CuI complexes with substituted organoazides affords terminally ligated organoazide adducts with minimal activation of the azide unit as evidenced by vibrational spectroscopy and single crystal X-ray diffraction. The Cu nitrenoid, with an electronic structure most consistent with a triplet nitrene adduct of CuI, is accessed following geometric rearrangement of the azide adduct from κ1-N terminal ligation to κ1-N internal ligation with subsequent expulsion of N2. For perfluorinated arylazides, stoichiometric and catalytic C-H amination and aziridination was observed. Mechanistic analysis employing substrate competition reveals an enthalpically-controlled, electrophilic nitrene transfer for primary and secondary C-H bonds. Kinetic analyses for catalytic amination using tetrahydrofuran as a model substrate reveal pseudo-first order kinetics under relevant amination conditions with a first-order dependence on both Cu and organoazide. Activation parameters determined from Eyring analysis (ΔH‡ = 9.2(2) kcal mol-1, ΔS‡ = -42(2) cal mol-1 K-1, ΔG‡298K = 21.7(2) kcal mol-1) and parallel kinetic isotope effect measurements (1.10(2)) are consistent with rate-limiting Cu nitrenoid formation, followed by a proposed stepwise hydrogen-atom abstraction and rapid radical recombination to furnish the resulting C-N bond. The proposed mechanism and experimental analysis are further corroborated by density functional theory calculations. Multiconfigurational calculations provide insight into the electronic structure of the catalytically relevant Cu nitrene intermediates. The findings presented herein will assist in the development of future methodology for Cu-mediated C-N bond forming catalysis.

2.
Chem Sci ; 14(25): 6915-6929, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37389249

RESUMEN

Nickel K- and L2,3-edge X-ray absorption spectra (XAS) are discussed for 16 complexes and complex ions with nickel centers spanning a range of formal oxidation states from II to IV. K-edge XAS alone is shown to be an ambiguous metric of physical oxidation state for these Ni complexes. Meanwhile, L2,3-edge XAS reveals that the physical d-counts of the formally NiIV compounds measured lie well above the d6 count implied by the oxidation state formalism. The generality of this phenomenon is explored computationally by scrutinizing 8 additional complexes. The extreme case of NiF62- is considered using high-level molecular orbital approaches as well as advanced valence bond methods. The emergent electronic structure picture reveals that even highly electronegative F-donors are incapable of supporting a physical d6 NiIV center. The reactivity of NiIV complexes is then discussed, highlighting the dominant role of the ligands in this chemistry over that of the metal centers.

3.
Nat Chem ; 14(11): 1265-1269, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36064970

RESUMEN

Reduction of nitrite anions (NO2-) to nitric oxide (NO), nitrous oxide (N2O) and ultimately dinitrogen (N2) takes place in a variety of environments, including in the soil as part of the biogeochemical nitrogen cycle and in acidified nuclear waste. Nitrite reduction typically takes place within the coordination sphere of a redox-active transition metal. Here we show that Lewis acid coordination can substantially modify the reduction potential of this polyoxoanion to allow for its reduction under non-aqueous conditions (-0.74 V versus NHE). Detailed characterization confirms the formation of the borane-capped radical nitrite dianion (NO22-), which features a N(II) oxidation state. Protonation of the nitrite dianion results in the facile loss of nitric oxide (NO), whereas its reaction with NO results in disproportionation to nitrous oxide (N2O) and nitrite (NO2-). This system connects three redox levels in the global nitrogen cycle and provides fundamental insights into the conversion of NO2- to NO.


Asunto(s)
Nitritos , Óxido Nitroso , Ácidos de Lewis , Óxido Nítrico , Dióxido de Nitrógeno , Oxidación-Reducción
4.
Chem Commun (Camb) ; 58(78): 10961-10964, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36083292

RESUMEN

Plutonium-based technologies would benefit if chemical hazards for purifying plutonium were reduced. One critical processing step where improvements could be impactful is the adjustment of plutonium oxidation-states during separations. This transformation often requires addition of redox agents. Unfortunately, many of the redox agents used previously cannot be used today because their properties are deemed incompatible with modern day processing facilities and waste stream safety requirements. We demonstrated herein that photochemistry can be used as an alternative to those chemical agents. We observed that (1) Pu4+ → Pu3+ and UO22+ → U4+ photoreduction proceeded in HCl(aq) and HNO3(aq) and (2) photogenerated Pu3+(aq) and U4+(aq) could be separated using anion exchange chromatography (high yield, >90%; good separation factor, 322).

5.
Chem Sci ; 12(40): 13343-13359, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34777753

RESUMEN

There is significant interest in ligands that can stabilize actinide ions in oxidation states that can be exploited to chemically differentiate 5f and 4f elements. Applications range from developing large-scale actinide separation strategies for nuclear industry processing to carrying out analytical studies that support environmental monitoring and remediation efforts. Here, we report syntheses and characterization of Np(iv), Pu(iv) and Am(iii) complexes with N-tert-butyl-N-(pyridin-2-yl)hydroxylaminato, [2-( t BuNO)py]-(interchangeable hereafter with [( t BuNO)py]-), a ligand which was previously found to impart remarkable stability to cerium in the +4 oxidation state. An[( t BuNO)py]4 (An = Pu, 1; Np, 2) have been synthesized, characterized by X-ray diffraction, X-ray absorption, 1H NMR and UV-vis-NIR spectroscopies, and cyclic voltammetry, along with computational modeling and analysis. In the case of Pu, oxidation of Pu(iii) to Pu(iv) was observed upon complexation with the [( t BuNO)py]- ligand. The Pu complex 1 and Np complex 2 were also isolated directly from Pu(iv) and Np(iv) precursors. Electrochemical measurements indicate that a Pu(iii) species can be accessed upon one-electron reduction of 1 with a large negative reduction potential (E 1/2 = -2.26 V vs. Fc+/0). Applying oxidation potentials to 1 and 2 resulted in ligand-centered electron transfer reactions, which is different from the previously reported redox chemistry of UIV[( t BuNO)py]4 that revealed a stable U(v) product. Treatment of an anhydrous Am(iii) precursor with the [( t BuNO)py]- ligand did not result in oxidation to Am(iv). Instead, the dimeric complex [AmIII(µ2-( t BuNO)py)(( t BuNO)py)2]2 (3) was isolated. Complex 3 is a rare example of a structurally characterized non-aqueous Am-containing molecular complex prepared using inert atmosphere techniques. Predicted redox potentials from density functional theory calculations show a trivalent accessibility trend of U(iii) < Np(iii) < Pu(iii) and that the higher oxidation states of actinides (i.e., +5 for Np and Pu and +4 for Am) are not stabilized by [2-( t BuNO)py]-, in good agreement with experimental observations.

6.
Dalton Trans ; 50(43): 15696-15710, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34693951

RESUMEN

Controlling structure and reactivity by manipulating the outer-coordination sphere around a given reagent represents a longstanding challenge in chemistry. Despite advances toward solving this problem, it remains difficult to experimentally interrogate and characterize outer-coordination sphere impact. This work describes an alternative approach that quantifies outer-coordination sphere effects. It shows how molten salt metal chlorides (MCln; M = K, Na, n = 1; M = Ca, n = 2) provided excellent platforms for experimentally characterizing the influence of the outer-coordination sphere cations (Mn+) on redox reactions accessible to lanthanide ions; Ln3+ + e1- → Ln2+ (Ln = Eu, Yb, Sm; e1- = electron). As a representative example, X-ray absorption spectroscopy and cyclic voltammetry results showed that Eu2+ instantaneously formed when Eu3+ dissolved in molten chloride salts that had strongly polarizing cations (like Ca2+ from CaCl2) via the Eu3+ + Cl1- → Eu2+ + ½Cl2 reaction. Conversely, molten salts with less polarizing outer-sphere M1+ cations (e.g., K1+ in KCl) stabilized Ln3+. For instance, the Eu3+/Eu2+ reduction potential was >0.5 V more positive in CaCl2 than in KCl. In accordance with first-principle molecular dynamics (FPMD) simulations, we postulated that hard Mn+ cations (high polarization power) inductively removed electron density from Lnn+ across Ln-Cl⋯Mn+ networks and stabilized electron-rich and low oxidation state Ln2+ ions. Conversely, less polarizing Mn+ cations (like K1+) left electron density on Lnn+ and stabilized electron-deficient and high-oxidation state Ln3+ ions.

7.
Inorg Chem ; 59(24): 17834-17850, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33258366

RESUMEN

A high-spin, mononuclear TiII complex, [(TptBu,Me)TiCl] [TptBu,Me- = hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borate], confined to a tetrahedral ligand-field environment, has been prepared by reduction of the precursor [(TptBu,Me)TiCl2] with KC8. Complex [(TptBu,Me)TiCl] has a 3A2 ground state (assuming C3v symmetry based on structural studies), established via a combination of high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy, solution and solid-state magnetic studies, Ti K-edge X-ray absorption spectroscopy (XAS), and both density functional theory and ab initio (complete-active-space self-consistent-field, CASSCF) calculations. The formally and physically defined TiII complex readily binds tetrahydrofuran (THF) to form the paramagnetic adduct [(TptBu,Me)TiCl(THF)], which is impervious to N2 binding. However, in the absence of THF, the TiII complex captures N2 to produce the diamagnetic complex [(TptBu,Me)TiCl]2(η1,η1;µ2-N2), with a linear Ti═N═N═Ti topology, established by single-crystal X-ray diffraction. The N2 complex was characterized using XAS as well as IR and Raman spectroscopies, thus establishing this complex to possess two TiIII centers covalently bridged by an N22- unit. A π acid such as CNAd (Ad = 1-adamantyl) coordinates to [(TptBu,Me)TiCl] without inducing spin pairing of the d electrons, thereby forming a unique high-spin and five-coordinate TiII complex, namely, [(TptBu,Me)TiCl(CNAd)]. The reducing power of the coordinatively unsaturated TiII-containing [(ΤptBu,Me)TiCl] species, quantified by electrochemistry, provides access to a family of mononuclear TiIV complexes of the type [(TptBu,Me)Ti═E(Cl)] (with E2- = NSiMe3, N2CPh2, O, and NH) by virtue of atom- or group-transfer reactions using various small molecules such as N3SiMe3, N2CPh2, N2O, and the bicyclic amine 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene.

8.
Inorg Chem ; 59(18): 13416-13426, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32871080

RESUMEN

High-energy resolution fluorescence-detected Cu K-edge X-ray absorption spectroscopy (XAS) and single-crystal polarized XAS data are presented toward refining the assignments of bands assigned as excitations from Cu 1s to ligand-localized molecular orbitals. These have been previously dubbed "XAS-metal-ligand charge transfer" (XAS-MLCT) bands. Data are presented for a series of [Cu(xbpy)2]n+ complexes (xbpy = 2,2'-bipyridine (1n+), 4,4'-bisamino-2,2'-bipyridine (2n+), and 4,4'-dimethoxy-2,2'-bipyridine (3n+); n = 1 and 2). Dipolar dependencies of these "XAS-MLCT" bands in both Cu1+ and Cu2+ species lead to reassignment of these features as owing their intensities primarily to Cu 1s → Cu 4p excitations. The transition densities are Cu-localized, highlighting that XAS-MLCT features in Cu XAS spectra are not "charge transfer" transitions but rather quasi-atomic transitions. Although scrutiny of the acceptor orbitals supports assignment as Cu 1s → ligand π* transitions, it ultimately appears that while the ligand orbital energetics govern the positions of these bands the intensity is conferred through a small degree of metal 4p mixing into otherwise ligand-dominated acceptor molecular orbitals.

9.
Inorg Chem ; 59(13): 9143-9151, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32573210

RESUMEN

Nickel anions [(MeCN)Ni(CF3)3]- and [Ni(CF3)4]2- were prepared by the formal addition of 3 and 4 equiv, respectively, of AgCF3 to [(dme)NiBr2] in the presence of the [PPh4]+ counterion. Detailed insights into the electronic properties of these new compounds were obtained through the use of density functional theory (DFT) calculations, spectroscopy-oriented configuration interaction (SORCI) calculations, X-ray absorption spectroscopy, and cyclic voltammetry. The data collectively show that trifluoromethyl complexes of nickel, even in the most common oxidation state of nickel(II), are highly covalent systems whereby a hole is distributed on the trifluoromethyl ligands, surprisingly rendering the metal to a physically more reduced state. In the cases of [(MeCN)Ni(CF3)3]- and [Ni(CF3)4]2-, these complexes are better physically described as d9 metal complexes. [(MeCN)Ni(CF3)3]- is electrophilic and reacts with other nucleophiles such as phenoxide to yield the unsupported [(PhO)Ni(CF3)3]2- salt, revealing the broader potential of [(MeCN)Ni(CF3)3]- in the development of "ligandless" trifluoromethylations at nickel. Proof-in-principle experiments show that the reaction of [(MeCN)Ni(CF3)3]- with an aryl iodonium salt yields trifluoromethylated arene, presumably via a high-valent, unsupported, and formal organonickel(IV) intermediate. Evidence of the feasibility of such intermediates is provided with the structurally characterized [PPh4]2[Ni(CF3)4(SO4)], which was derived through the two-electron oxidation of [Ni(CF3)4]2-.

10.
Inorg Chem ; 59(11): 7571-7583, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421315

RESUMEN

The introduction of (N2)3-• radicals into multinuclear lanthanide molecular magnets raised hysteresis temperatures by stimulating strong exchange coupling between spin centers. Radical ligands with larger donor atoms could promote more efficient magnetic coupling between lanthanides to provide superior magnetic properties. Here, we show that heavy chalcogens (S, Se, Te) are primed to fulfill these criteria. The moderately reducing Sm(II) complex, [Sm(N††)2], where N†† is the bulky bis(triisopropylsilyl)amide ligand, can be oxidized (i) by diphenyldichalcogenides E2Ph2 (E = S, Se, Te) to form the mononuclear series [Sm(N††)2(EPh)] (E = S, 1-S; Se, 1-Se, Te, 1-Te); (ii) S8 or Se8 to give dinuclear [{Sm(N††)2}2(µ-η2:η2-E2)] (E = S, 2-S2; Se, 2-Se2); or (iii) with Te═PEt3 to yield [{Sm(N††)2}(µ-Te)] (3). These complexes have been characterized by single crystal X-ray diffraction, multinuclear NMR, FTIR, and electronic spectroscopy; the steric bulk of N†† dictates the formation of mononuclear complexes with chalcogenate ligands and dinuclear species with the chalcogenides. The Lα1 fluorescence-detected X-ray absorption spectra at the Sm L3-edge yielded resolved pre-edge and white-line peaks for 1-S and 2-E2, which served to calibrate our computational protocol in the successful reproduction of the spectral features. This method was employed to elucidate the ground state electronic structures for proposed oxidized and reduced variants of 2-E2. Reactivity is ligand-based, forming species with bridging superchalcogenide (E2)-• and subchalcogenide (E2)3-• radical ligands. The extraordinarily large exchange couplings provided by these dichalcogenide radicals reveal their suitability as potential successors to the benchmark (N2)3-• complexes in molecular magnets.

11.
Chem Rev ; 120(12): 5252-5307, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32108471

RESUMEN

The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.


Asunto(s)
Metaloproteínas/metabolismo , Nitrógeno/metabolismo , Hidrazinas/química , Hidrazinas/metabolismo , Metaloproteínas/química , Modelos Moleculares , Nitrógeno/química , Óxido Nitroso/química , Óxido Nitroso/metabolismo
12.
J Am Chem Soc ; 142(5): 2264-2276, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31917556

RESUMEN

Dicopper complexes templated by dinucleating, pacman dipyrrin ligand scaffolds (Mesdmx, tBudmx: dimethylxanthine-bridged, cofacial bis-dipyrrin) were synthesized by deprotonation/metalation with mesitylcopper (CuMes; Mes: mesityl) or by transmetalation with cuprous precursors from the corresponding deprotonated ligand. Neutral imide complexes (Rdmx)Cu2(µ2-NAr) (R: Mes, tBu; Ar: 4-MeOC6H4, 3,5-(F3C)2C6H3) were synthesized by treatment of the corresponding dicuprous complexes with aryl azides. While one-electron reduction of (Mesdmx)Cu2(µ2-N(C6H4OMe)) with potassium graphite initiates an intramolecular, benzylic C-H amination at room temperature, chemical reduction of (tBudmx)Cu2(µ2-NAr) leads to isolable [(tBudmx)Cu2(µ2-NAr)]- product salts. The electronic structures of the thermally robust [(tBudmx)Cu2(µ2-NAr)]0/- complexes were assessed by variable-temperature electron paramagnetic resonance spectroscopy, X-ray absorption spectroscopy (Cu L2,3/K-edge, N K-edge), optical spectroscopy, and DFT/CASSCF calculations. These data indicate that the formally Class IIIA mixed valence complexes of the type [(Rdmx)Cu2(µ2-NAr)]- feature significant NAr-localized spin following reduction from electronic population of the [Cu2(µ2-NAr)] π* manifold, contrasting previous methods for engendering iminyl character through chemical oxidation. The reactivity of the isolable imido and iminyl complexes are examined for prototypical radical-promoted reactivity (e.g., nitrene transfer and H-atom abstraction), where the divergent reactivity is rationalized by the relative degree of N-radical character afforded from different aryl substituents.


Asunto(s)
Cobre/química , Iminas/química , Estructura Molecular , Modelos Moleculares , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
13.
Chem Sci ; 11(13): 3441-3447, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-34745516

RESUMEN

Nitrous oxide (N2O) contributes significantly to ozone layer depletion and is a potent greenhouse agent, motivating interest in the chemical details of biological N2O fixation by nitrous oxide reductase (N2OR) during bacterial denitrification. In this study, we report a combined experimental/computational study of a synthetic [4Cu:1S] cluster supported by N-donor ligands that can be considered the closest structural and functional mimic of the CuZ catalytic site in N2OR reported to date. Quantitative N2 measurements during synthetic N2O reduction were used to determine reaction stoichiometry, which in turn was used as the basis for density functional theory (DFT) modeling of hypothetical reaction intermediates. The mechanism for N2O reduction emerging from this computational modeling involves cooperative activation of N2O across a Cu/S cluster edge. Direct interaction of the µ4-S ligand with the N2O substrate during coordination and N-O bond cleavage represents an unconventional mechanistic paradigm to be considered for the chemistry of CuZ and related metal-sulfur clusters. Consistent with hypothetical participation of the µ4-S unit in two-electron reduction of N2O, Cu K-edge and S K-edge X-ray absorption spectroscopy (XAS) reveal a high degree of participation by the µ4-S in redox changes, with approximately 21% S 3p contribution to the redox-active molecular orbital in the highly covalent [4Cu:1S] core, compared to approximately 14% Cu 3d contribution per copper. The XAS data included in this study represent the first spectroscopic interrogation of multiple redox levels of a [4Cu:1S] cluster and show high fidelity to the biological CuZ site.

14.
J Am Chem Soc ; 141(46): 18508-18520, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31710466

RESUMEN

Seventeen Cu complexes with formal oxidation states ranging from CuI to CuIII are investigated through the use of multiedge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations. Analysis reveals that the metal-ligand bonding in high-valent, formally CuIII species is extremely covalent, resulting in Cu K-edge and L2,3-edge spectra whose features have energies that complicate physical oxidation state assignment. Covalency analysis of the Cu L2,3-edge data reveals that all formally CuIII species have significantly diminished Cu d-character in their lowest unoccupied molecular orbitals (LUMOs). DFT calculations provide further validation of the orbital composition analysis, and excellent agreement is found between the calculated and experimental results. The finding that Cu has limited capacity to be oxidized necessitates localization of electron hole character on the supporting ligands; consequently, the physical d8 description for these formally CuIII species is inaccurate. This study provides an alternative explanation for the competence of formally CuIII species in transformations that are traditionally described as metal-centered, 2-electron CuI/CuIII redox processes.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Electrones , Ligandos , Modelos Moleculares , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
15.
J Am Chem Soc ; 141(44): 17533-17547, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31647656

RESUMEN

The activation of dioxygen by FeII(Me3TACN)(S2SiMe2) (1) is reported. Reaction of 1 with O2 at -135 °C in 2-MeTHF generates a thiolate-ligated (peroxo)diiron complex FeIII2(O2)(Me3TACN)2(S2SiMe2)2 (2) that was characterized by UV-vis (λmax = 300, 390, 530, 723 nm), Mössbauer (δ = 0.53, |ΔEQ| = 0.76 mm s-1), resonance Raman (RR) (ν(O-O) = 849 cm-1), and X-ray absorption (XAS) spectroscopies. Complex 2 is distinct from the outer-sphere oxidation product 1ox (UV-vis (λmax = 435, 520, 600 nm), Mössbauer (δ = 0.45, |ΔEQ| = 3.6 mm s-1), and EPR (S = 5/2, g = [6.38, 5.53, 1.99])), obtained by one-electron oxidation of 1. Cleavage of the peroxo O-O bond can be initiated either photochemically or thermally to produce a new species assigned as an FeIV(O) complex, FeIV(O)(Me3TACN)(S2SiMe2) (3), which was identified by UV-vis (λmax = 385, 460, 890 nm), Mössbauer (δ = 0.21, |ΔEQ| = 1.57 mm s-1), RR (ν(FeIV═O) = 735 cm-1), and X-ray absorption spectroscopies, as well as reactivity patterns. Reaction of 3 at low temperature with H atom donors gives a new species, FeIII(OH)(Me3TACN)(S2SiMe2) (4). Complex 4 was independently synthesized from 1 by the stoichiometric addition of a one-electron oxidant and a hydroxide source. This work provides a rare example of dioxygen activation at a mononuclear nonheme iron(II) complex that produces both FeIII-O-O-FeIII and FeIV(O) species in the same reaction with O2. It also demonstrates the feasibility of forming Fe/O2 intermediates with strongly donating sulfur ligands while avoiding immediate sulfur oxidation.


Asunto(s)
Complejos de Coordinación/química , Oxígeno/química , Complejos de Coordinación/efectos de la radiación , Teoría Funcional de la Densidad , Hierro/química , Ligandos , Luz , Modelos Químicos , Estructura Molecular , Oxidación-Reducción , Oxígeno/efectos de la radiación , Espectroscopía de Absorción de Rayos X
16.
Science ; 365(6458): 1138-1143, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31515388

RESUMEN

Terminal copper-nitrenoid complexes have inspired interest in their fundamental bonding structures as well as their putative intermediacy in catalytic nitrene-transfer reactions. Here, we report that aryl azides react with a copper(I) dinitrogen complex bearing a sterically encumbered dipyrrin ligand to produce terminal copper nitrene complexes with near-linear, short copper-nitrenoid bonds [1.745(2) to 1.759(2) angstroms]. X-ray absorption spectroscopy and quantum chemistry calculations reveal a predominantly triplet nitrene adduct bound to copper(I), as opposed to copper(II) or copper(III) assignments, indicating the absence of a copper-nitrogen multiple-bond character. Employing electron-deficient aryl azides renders the copper nitrene species competent for alkane amination and alkene aziridination, lending further credence to the intermediacy of this species in proposed nitrene-transfer mechanisms.

17.
Chem Sci ; 10(19): 5044-5055, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31183055

RESUMEN

Nitrogen K-edge X-ray absorption spectra (XAS) were obtained for 19 transition metal complexes bearing bipyridine, ethylenediamine, ammine, and nitride ligands. Time-dependent density functional theory (TDDFT) and DFT/restricted open configuration interaction singles (DFT/ROCIS) calculations were found to predict relative N K-edge XAS peak energies with good fidelity to experiment. The average difference (|ΔE|) between experimental and linear corrected calculated energies were found to be 0.55 ± 0.05 eV and 0.46 ± 0.04 eV, respectively, using the B3LYP hybrid density functional and scalar relativistically recontracted ZORA-def2-TZVP(-f) basis set. Deconvolution of these global correlations into individual N-donor ligand classes gave improved agreement between experiment and theory with |ΔE| less than 0.4 eV for all ligand classes in the case of DFT/ROCIS. In addition, calibration method-dependent values for the N 1s → 2p radial dipole integral of 25.4 ± 1.7 and 26.8 ± 1.9 are obtained, affording means to estimate the nitrogen 2p character in unfilled frontier molecular orbitals. For the complexes studied, nitrogen covalency values correlate well to those calculated by hybrid DFT with an R 2 = 0.92 ± 0.01. Additionally, as a test case, a well-characterized PNP ligand framework (PNP = N[2-P(CHMe2)2-4-methylphenyl]2 1-) coordinated to NiII is investigated for its ability to act as a redox non-innocent ligand. Upon oxidation of (PNP)NiCl with [FeCp2](OTf) to its radical cation, [(PNP)NiCl](OTf) (OTf = triflate), a new low-energy feature emerges in the N K-edge XAS spectra. This feature is assigned as N 1s to a PNP-localized acceptor orbital exhibiting 27 ± 2% N 2p aminyl radical character, obtained using the aforementioned nitrogen covalency calibration. Combined, these data showcase a direct spectroscopic means of identifying redox-active N-donor ligands and also estimating nitrogen 2p covalency of frontier molecular orbitals in transition metal complexes.

18.
Chem Sci ; 10(3): 918-929, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30774886

RESUMEN

Fixation and chemical reduction of CO2 are important for utilization of this abundant resource, and understanding the detailed mechanism of C-O cleavage is needed for rational development of CO2 reduction methods. Here, we describe a detailed analysis of the mechanism of the reaction of a masked two-coordinate cobalt(i) complex, L tBuCo (where L tBu = 2,2,6,6-tetramethyl-3,5-bis[(2,6-diisopropylphenyl)imino]hept-4-yl), with CO2, which yields two products of C-O cleavage, the cobalt(i) monocarbonyl complex L tBuCo(CO) and the dicobalt(ii) carbonate complex (L tBuCo)2(µ-CO3). Kinetic studies and computations show that the κN,η6-arene isomer of L tBuCo rearranges to the κ2 N,N' binding mode prior to binding of CO2, which contrasts with the mechanism of binding of other substrates to L tBuCo. Density functional theory (DFT) studies show that the only low-energy pathways for cleavage of CO2 proceed through bimetallic mechanisms, and DFT and highly correlated domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) calculations reveal the cooperative effects of the two metal centers during facile C-O bond rupture. A plausible intermediate in the reaction of CO2 with L tBuCo is the oxodicobalt(ii) complex L tBuCoOCoL tBu, which has been independently synthesized through the reaction of L tBuCo with N2O. The rapid reaction of L tBuCoOCoL tBu with CO2 to form the carbonate product indicates that the oxo species is kinetically competent to be an intermediate during CO2 cleavage by L tBuCo. L tBuCoOCoL tBu is a novel example of a thoroughly characterized molecular cobalt-oxo complex where the cobalt ions are clearly in the +2 oxidation state. Its nucleophilic reactivity is a consequence of high charge localization on the µ-oxo ligand between two antiferromagnetically coupled high-spin cobalt(ii) centers, as characterized by DFT and multireference complete active space self-consistent field (CASSCF) calculations.

19.
Organometallics ; 38(21): 4224-4232, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34103782

RESUMEN

We report the first Fe─CPh3 complex, and show that the long Fe─C bond can be disrupted by neutral π-acceptor ligands (benzophenone and phenylacetylene) to release the triphenylmethyl radical. The products are formally iron(I) complexes, but X-ray absorption spectroscopy coupled with density functional and multireference ab initio calculations indicates that the best description of all the complexes is iron(II). In the formally iron(I) complexes, this does not imply that the π-acceptor ligand has radical character, because the iron(II) description arises from doubly-occupied frontier molecular orbitals that are shared equitably by the iron and the π-acceptor ligand, and the unpaired electrons lie on the metal. Despite the lack of substantial radical character on the ligands, alkyne and ketone fragments can couple to form a high-spin iron(III) complex with a cyclized metalladihydrofuran core.

20.
Dalton Trans ; 47(31): 10613-10625, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-29790545

RESUMEN

The addition of various oxidants to the near-linear Sm(ii) complex [Sm(N††)2] (1), where N†† is the bulky bis(triisopropylsilyl)amide ligand {N(SiiPr3)2}, afforded a family of heteroleptic three-coordinate Sm(iii) halide complexes, [Sm(N††)2(X)] (X = F, 2-F; Cl, 2-Cl; Br, 2-Br; I, 2-I). In addition, the trinuclear cluster [{Sm(N††)}3(µ2-I)3(µ3-I)2] (3), which formally contains one Sm(ii) and two Sm(iii) centres, was isolated during the synthesis of 2-I. Complexes 2-X are remarkably stable towards ligand redistribution, which is often a facile process for heteroleptic complexes of smaller monodentate ligands in lanthanide chemistry, including the related bis(trimethylsilyl)amide {N(SiMe3)2} (N''). Complexes 2-X and 3 have been characterised by single crystal X-ray diffraction, elemental analysis, multinuclear NMR, FTIR and electronic spectroscopy. The Lα1 fluorescence-detected X-ray absorption spectra recorded at the Sm L3-edge for 2-X exhibited a resolved pre-edge peak defined as an envelope of quadrupole-allowed 2p → 4f transitions. The X-ray absorption spectral features were successfully reproduced using time-dependent density functional theoretical (TD-DFT) calculations that synergistically support the experimental observations as well as the theoretical model upon which the electronic structure and bonding in these lanthanide complexes is derived.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA