Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565287

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), pose significant risks of severe fibrosis, cirrhosis, and hepatocellular carcinoma. Despite their widespread prevalence, the molecular mechanisms underlying the development and progression of these common chronic hepatic conditions are not fully understood. Here, we conducted the most extensive meta-analysis of hepatic gene expression datasets from liver biopsy samples to date, integrating 10 RNA-sequencing and microarray datasets (1,058 samples). Using a random-effects meta-analysis model, we compared over 12,000 shared genes across datasets. We identified 685 genes differentially expressed in MASLD versus normal liver, 1,870 in MASH versus normal liver, and 3,284 in MASLD versus MASH. Integrating these results with genome-wide association studies and coexpression networks, we identified two functionally relevant, validated coexpression modules mainly driven by SMOC2, ITGBL1, LOXL1, MGP, SOD3, and TAT, HGD, SLC25A15, respectively, the latter not previously associated with MASLD and MASH. Our findings provide a comprehensive and robust analysis of hepatic gene expression alterations associated with MASLD and MASH and identify novel key drivers of MASLD progression.


Asunto(s)
Carcinoma Hepatocelular , Hígado Graso , Neoplasias Hepáticas , Humanos , Estudio de Asociación del Genoma Completo , Transcriptoma/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Integrina beta1
2.
Clin Nutr ESPEN ; 60: 333-342, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38479932

RESUMEN

BACKGROUND: Recent studies suggest that proteomic cargo of extracellular vesicles (EVs) may play a role in metabolic improvements following lifestyle interventions. However, the relationship between changes in liver fat and circulating EV-derived protein cargo following intervention remains unexplored. METHODS: The study cohort comprised 18 Latino adolescents with obesity and hepatic steatosis (12 males/6 females; average age 13.3 ± 1.2 y) who underwent a six-month lifestyle intervention. EV size distribution and concentration were determined by light scattering intensity; EV protein composition was characterized by liquid chromatography tandem-mass spectrometry. RESULTS: Average hepatic fat fraction (HFF) decreased 23% by the end of the intervention (12.5% [5.5] to 9.6% [4.9]; P = 0.0077). Mean EV size was smaller post-intervention compared to baseline (120.2 ± 16.4 nm to 128.4 ± 16.5 nm; P = 0.031), although the difference in mean EV concentration (1.1E+09 ± 4.1E+08 particles/mL to 1.1E+09 ± 1.8E+08 particles/mL; P = 0.656)) remained unchanged. A total of 462 proteins were identified by proteomic analysis of plasma-derived EVs from participants pre- and post-intervention, with 113 proteins showing differential abundance (56 higher and 57 lower) between the two timepoints (adj-p <0.05). Pathway analysis revealed enrichment in complement cascade, initial triggering of complement, creation of C4 and C2 activators, and regulation of complement cascade. Hepatocyte-specific EV affinity purification identified 40 proteins with suggestive (p < 0.05) differential abundance between pre- and post-intervention samples. CONCLUSIONS: Circulating EV-derived proteins, particularly those associated with the complement cascade, may contribute to improvements in liver fat in response to lifestyle intervention.


Asunto(s)
Vesículas Extracelulares , Proteómica , Masculino , Femenino , Humanos , Adolescente , Niño , Proteómica/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Cromatografía Liquida , Proteínas/metabolismo , Espectrometría de Masas
3.
Noncoding RNA ; 9(6)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38133210

RESUMEN

We are delighted to share with you our thirteenth Journal Club and highlight some of the most interesting papers published recently [...].

4.
Artículo en Inglés | MEDLINE | ID: mdl-37284808

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in children. Like adults, children can develop the progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), which is characterized by hepatic inflammation, often in the presence of fibrosis. Children with NAFLD are at higher risk of liver-related complications, metabolic dysfunction, and cardiovascular disease in adulthood. Many factors contribute to the escalating prevalence of NAFLD in the pediatric population, among which are an array of dietary patterns such as overnutrition, poor diet quality, and heavy consumption of fat and sugar, including fructose. Findings from an increasing number of epidemiological studies support a connection between high habitual sugar consumption and NAFLD, especially within the context of obesity, but these studies are not able to demonstrate whether sugar is a contributing factor or instead an indicator of an overall poor diet (or lifestyle) quality. To date, only four randomized controlled dietary interventions assessing the effects of sucrose/fructose restriction on hepatic fat fraction in youth with obesity have been published. The objectives of this review are to summarize the key findings from these dietary interventions to achieve a better understanding of the strength of the relationship between dietary sugar restriction and liver fat reduction, despite their inherent limitations, and to discuss the potential impact of weight loss and fat mass reduction on improvement in hepatic steatosis.

5.
Nutrients ; 15(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375574

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition among postmenopausal women that can lead to severe liver dysfunction and increased mortality. In recent years, research has focused on identifying potential lifestyle dietary interventions that may prevent or treat NAFLD in this population. Due to the complex and multifactorial nature of NAFLD in postmenopausal women, the disease can present as different subtypes, with varying levels of clinical presentation and variable treatment responses. By recognizing the significant heterogeneity of NAFLD in postmenopausal women, it may be possible to identify specific subsets of individuals who may benefit from targeted nutritional interventions. The purpose of this review was to examine the current evidence supporting the role of three specific nutritional factors-choline, soy isoflavones, and probiotics-as potential nutritional adjuvants in the prevention and treatment of NAFLD in postmenopausal women. There is promising evidence supporting the potential benefits of these nutritional factors for NAFLD prevention and treatment, particularly in postmenopausal women, and further research is warranted to confirm their effectiveness in alleviating hepatic steatosis in this population.


Asunto(s)
Isoflavonas , Enfermedad del Hígado Graso no Alcohólico , Probióticos , Humanos , Femenino , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Posmenopausia , Colina/uso terapéutico , Probióticos/uso terapéutico , Isoflavonas/uso terapéutico
6.
Curr Opin Gastroenterol ; 39(3): 156-162, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37144532

RESUMEN

PURPOSE OF REVIEW: Nonalcoholic fatty liver disease (NAFLD) is strongly associated with obesity, but is also common in individuals with a normal body mass index (BMI), who also experience the hepatic inflammation, fibrosis, and decompensated cirrhosis associated with NAFLD progression. The clinical evaluation and treatment of NAFLD in this patient population are challenging for the gastroenterologist. A better understanding of the epidemiology, natural history, and outcomes of NAFLD in individuals with normal BMI is emerging. This review examines the relationship between metabolic dysfunction and clinical characteristics associated with NAFLD in normal-weight individuals. RECENT FINDINGS: Despite a more favorable metabolic profile, normal-weight NAFLD patients exhibit metabolic dysfunction. Visceral adiposity may be a critical risk factor for NAFLD in normal-weight individuals, and waist circumference may be better than BMI for assessing metabolic risk in these patients. Although screening for NAFLD is not presently recommended, recent guidelines may assist clinicians in the diagnosis, staging, and management of NAFLD in individuals with a normal BMI. SUMMARY: Individuals with a normal BMI likely develop NAFLD as a result of different etiologies. Subclinical metabolic dysfunction may be a key component of NAFLD in these patients, and efforts to better understand this relationship in this patient population are needed.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Índice de Masa Corporal , Factores de Riesgo , Obesidad/complicaciones , Obesidad/epidemiología , Cirrosis Hepática/etiología , Cirrosis Hepática/complicaciones
8.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36012560

RESUMEN

Choline deficiency causes hepatic fat accumulation, and is associated with a higher risk of nonalcoholic fatty liver disease (NAFLD) and more advanced NAFLD-related hepatic fibrosis. Reduced expression of hepatic phosphatidylethanolamine N-methyltransferase (PEMT), which catalyzes the production of phosphatidylcholine, causes steatosis, inflammation, and fibrosis in mice. In humans, common PEMT variants impair phosphatidylcholine synthesis, and are associated with NAFLD risk. We investigated hepatic PEMT expression in a large cohort of patients representing the spectrum of NAFLD, and examined the relationship between PEMT genetic variants and gene expression. Hepatic PEMT expression was reduced in NAFLD patients with inflammation and fibrosis (i.e., nonalcoholic steatohepatitis or NASH) compared to participants with normal liver histology (ß = −1.497; p = 0.005). PEMT levels also declined with increasing severity of fibrosis with cirrhosis < incomplete cirrhosis < bridging fibrosis (ß = −1.185; p = 0.011). Hepatic PEMT expression was reduced in postmenopausal women with NASH compared to those with normal liver histology (ß = −3.698; p = 0.030). We detected a suggestive association between rs7946 and hepatic fibrosis (p = 0.083). Although none of the tested variants were associated with hepatic PEMT expression, computational fine mapping analysis indicated that rs4646385 may impact PEMT levels in the liver. Hepatic PEMT expression decreases with increasing severity of NAFLD in obese individuals and postmenopausal women, and may contribute to disease pathogenesis in a subset of NASH patients.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Fosfatidiletanolamina N-Metiltransferasa , Femenino , Fibrosis , Humanos , Inflamación/patología , Hígado/enzimología , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolamina N-Metiltransferasa/genética , Fosfatidiletanolamina N-Metiltransferasa/metabolismo
9.
Metabolites ; 12(6)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35736460

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence with a heterogeneous and complex pathophysiology that presents barriers to traditional targeted therapeutic approaches. We describe an integrated quantitative systems pharmacology (QSP) platform that comprehensively and unbiasedly defines disease states, in contrast to just individual genes or pathways, that promote NAFLD progression. The QSP platform can be used to predict drugs that normalize these disease states and experimentally test predictions in a human liver acinus microphysiology system (LAMPS) that recapitulates key aspects of NAFLD. Analysis of a 182 patient-derived hepatic RNA-sequencing dataset generated 12 gene signatures mirroring these states. Screening against the LINCS L1000 database led to the identification of drugs predicted to revert these signatures and corresponding disease states. A proof-of-concept study in LAMPS demonstrated mitigation of steatosis, inflammation, and fibrosis, especially with drug combinations. Mechanistically, several structurally diverse drugs were predicted to interact with a subnetwork of nuclear receptors, including pregnane X receptor (PXR; NR1I2), that has evolved to respond to both xenobiotic and endogenous ligands and is intrinsic to NAFLD-associated transcription dysregulation. In conjunction with iPSC-derived cells, this platform has the potential for developing personalized NAFLD therapeutic strategies, informing disease mechanisms, and defining optimal cohorts of patients for clinical trials.

10.
Diabetol Metab Syndr ; 14(1): 45, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331317

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) can develop in lean individuals. Despite a better metabolic profile, the risk of disease progression to hepatic inflammation, fibrosis, and decompensated cirrhosis in the lean is similar to that in obesity-related NAFLD and lean individuals may experience more severe hepatic consequences and higher mortality relative to those with a higher body mass index (BMI). In the absence of early symptoms and abnormal laboratory findings, lean individuals are not likely to be screened for NAFLD or related comorbidities; however, given the progressive nature of the disease and the increased risk of morbidity and mortality, a clearer understanding of the natural history of NAFLD in lean individuals, as well as efforts to raise awareness of the potential health risks of NAFLD in lean individuals, are warranted. In this review, we summarize available data on NAFLD prevalence, clinical characteristics, outcomes, and mortality in lean individuals and discuss factors that may contribute to the development of NAFLD in this population, including links between dietary and genetic factors, menopausal status, and ethnicity. We also highlight the need for greater representation of lean individuals in NAFLD-related clinical trials, as well as more studies to better characterize lean NAFLD, develop improved screening algorithms, and determine specific treatment strategies based on underlying etiology.

11.
Annu Rev Pathol ; 17: 1-21, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34416820

RESUMEN

Long noncoding RNAs (lncRNAs) are pervasively transcribed in the genome, exhibit a diverse range of biological functions, and exert effects through a variety of mechanisms. The sheer number of lncRNAs in the human genome has raised important questions about their potential biological significance and roles in human health and disease. Technological and computational advances have enabled functional annotation of a large number of lncRNAs. Though the number of publications related to lncRNAs has escalated in recent years, relatively few have focused on those involved in hepatic physiology and pathology. We provide an overview of evolving lncRNA classification systems and characteristics and highlight important advances in our understanding of the contribution of lncRNAs to liver disease, with a focus on nonalcoholic steatohepatitis, hepatocellular carcinoma, and cholestatic liver disease.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , ARN Largo no Codificante , Genoma Humano , Humanos , ARN Largo no Codificante/genética
12.
Clin Epigenetics ; 13(1): 152, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34353365

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is characterized by changes in cell composition that occur throughout disease pathogenesis, which includes the development of fibrosis in a subset of patients. DNA methylation (DNAm) is a plausible mechanism underlying these shifts, considering that DNAm profiles differ across tissues and cell types, and DNAm may play a role in cell-type differentiation. Previous work investigating the relationship between DNAm and fibrosis in NAFLD has been limited by sample size and the number of CpG sites interrogated. RESULTS: Here, we performed an epigenome-wide analysis using Infinium MethylationEPIC array data from 325 individuals with NAFLD, including 119 with severe fibrosis and 206 with no histological evidence of fibrosis. After adjustment for latent confounders, we identified 7 CpG sites whose DNAm associated with fibrosis (p < 5.96 × 10-8). Analysis of RNA-seq data collected from a subset of individuals (N = 56) revealed that gene expression at 288 genes associated with DNAm at one or more of the 7 fibrosis-related CpGs. DNAm-based estimates of cell-type proportions showed that estimated proportions of natural killer cells increased, while epithelial cell proportions decreased with disease stage. Finally, we used an elastic net regression model to assess DNAm as a biomarker of fibrotic stage and found that our model predicted fibrosis with a sensitivity of 0.93 and provided information beyond a model based solely on cell-type proportions. CONCLUSION: These findings are consistent with DNAm as a mechanism underpinning or marking fibrosis-related shifts in cell composition and demonstrate the potential of DNAm as a possible biomarker of NAFLD fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/genética , Niño , Preescolar , Metilación de ADN/genética , Metilación de ADN/fisiología , Femenino , Humanos , Unidades de Cuidado Intensivo Pediátrico/organización & administración , Unidades de Cuidado Intensivo Pediátrico/estadística & datos numéricos , Efectos Adversos a Largo Plazo/etiología , Efectos Adversos a Largo Plazo/fisiopatología , Masculino , Estadificación de Neoplasias/métodos , Enfermedad del Hígado Graso no Alcohólico/fisiopatología
13.
Anesth Analg ; 132(6): 1614-1625, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33332892

RESUMEN

Preclinical investigations in animal models have consistently demonstrated neurobiological changes and life-long cognitive deficits following exposure to widely used anesthetics early in life. However, the mechanisms by which these exposures affect brain function remain poorly understood, therefore, limiting the efficacy of current diagnostic and therapeutic options in human studies. The human brain exhibits an abundant expression of long noncoding RNAs (lncRNAs). These biologically active transcripts play critical roles in a diverse array of functions, including epigenetic regulation. Changes in lncRNA expression have been linked with brain development, normal CNS processes, brain injuries, and the development of neurodegenerative diseases, and many lncRNAs are known to have brain-specific expression. Aberrant lncRNA expression has also been implicated in areas of growing importance in anesthesia-related research, including anesthetic-induced developmental neurotoxicity (AIDN), a condition defined by neurological changes occurring in patients repeatedly exposed to anesthesia, and the related condition of perioperative neurocognitive disorder (PND). In this review, we detail recent advances in PND and AIDN research and summarize the evidence supporting roles for lncRNAs in the brain under both normal and pathologic conditions. We also discuss lncRNAs that have been linked with PND and AIDN, and conclude with a discussion of the clinical potential for lncRNAs to serve as diagnostic and therapeutic targets for the prevention of these neurocognitive disorders and the challenges facing the identification and characterization of associated lncRNAs.


Asunto(s)
Anestésicos/efectos adversos , Trastornos Neurocognitivos/inducido químicamente , Trastornos Neurocognitivos/genética , Atención Perioperativa/métodos , ARN Largo no Codificante/fisiología , Anestésicos/administración & dosificación , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Humanos , Trastornos Neurocognitivos/diagnóstico
14.
J Hepatol ; 74(1): 20-30, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882372

RESUMEN

BACKGROUND & AIMS: A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in NAFLD; however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and to characterise its role in the regulation of related metabolic phenotypes through a meta-analysis. METHODS: We performed a meta-analysis of studies with data on the association between rs641738C>T genotype and liver fat, NAFLD histology, and serum alanine aminotransferase (ALT), lipids or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed a random effects meta-analysis using recessive, additive and dominant genetic models. RESULTS: Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI 0.02-0.05], pz = 4.8×10-5) and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05-1.3], pz = 0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI 1.03-1.45], pz = 0.021) in Caucasian adults using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT (pz = 0.002) and lower serum triglycerides (pz = 1.5×10-4). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD. CONCLUSIONS: Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent. LAY SUMMARY: Fatty liver disease is a common condition where fat builds up in the liver, which can cause liver inflammation and scarring (including 'cirrhosis'). It is closely linked to obesity and diabetes, but some genes are also thought to be important. We did this study to see whether one specific change ('variant') in one gene ('MBOAT7') was linked to fatty liver disease. We took data from over 40 published studies and found that this variant near MBOAT7 is linked to more severe fatty liver disease. This means that drugs designed to work on MBOAT7 could be useful for treating fatty liver disease.


Asunto(s)
Aciltransferasas/genética , Cirrosis Hepática , Hígado/patología , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico , Alanina Transaminasa/sangre , Descubrimiento de Drogas , Predisposición Genética a la Enfermedad , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Polimorfismo de Nucleótido Simple
15.
Pediatr Obes ; 16(6): e12759, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33305889

RESUMEN

The global prevalence of non-alcoholic fatty liver disease (NAFLD) in children and adolescents is escalating and currently represents the most common chronic liver disease in the paediatric population. NAFLD is associated with high daily caloric intake and sedentary behaviour, with excessive consumption of added sugar emerging as an important contributor to NAFLD risk in children. This is a particularly important factor for adolescents with obesity, who are the heaviest consumers of added sugar. Table sugar, or sucrose, is a disaccharide comprised of fructose and glucose, yet only fructose has been strongly linked to NAFLD pathogenesis largely due to the unique characteristics of its metabolism and detrimental effects on key metabolic pathways. To date, the relationship between excessive fructose intake and risk of NAFLD in children and adolescents remains incompletely understood, and it is not yet known whether fructose actually causes NAFLD or instead exacerbates hepatic fat accumulation and possible hepatocellular injury only within the context of cardiometabolic factors. The purpose of this review is to summarize recent studies linking fructose consumption with NAFLD in the paediatric population and integrate results from interventional studies of fructose restriction in children and adolescents on NAFLD and related metabolic markers. Given the overall positive impact of lifestyle modifications in the management of paediatric NAFLD, reduction of added sugar consumption may represent an important, early opportunity to mitigate or prevent NAFLD in high-risk children and adolescents.


Asunto(s)
Fructosa , Enfermedad del Hígado Graso no Alcohólico , Adolescente , Niño , Dieta , Fructosa/efectos adversos , Humanos , Hígado , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Obesidad
16.
Cell Physiol Biochem ; 54(5): 1068-1082, 2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33095528

RESUMEN

BACKGROUND/AIMS: Excessive consumption of dietary fat and sugar is associated with an elevated risk of nonalcoholic fatty liver disease (NAFLD). Hepatocytes exposed to saturated fat or sugar exert effects on nearby hepatic stellate cells (HSCs); however, the mechanisms by which this occurs are poorly understood. We sought to determine whether paracrine effects of hepatocytes exposed to palmitate and fructose produced profibrotic transcriptional responses in HSCs. METHODS: We performed expression profiling of mRNA and lncRNA from HSCs treated with conditioned media (CM) from human hepatocytes treated with palmitate (P), fructose (F), or both (PF). RESULTS: In HSCs exposed to CM from palmitate-treated hepatocytes, we identified 374 mRNAs and 607 lncRNAs showing significant differential expression (log2 foldchange ≥ |1|; FDR ≤0.05) compared to control cells. In HSCs exposed to CM from PF-treated hepatocytes, the number of differentially expressed genes was much higher (1198 mRNAs and 3348 lncRNAs); however, CM from fructose-treated hepatocytes elicited no significant changes in gene expression. Pathway analysis of differentially expressed genes showed enrichment for hepatic fibrosis and hepatic stellate cell activation in P- (FDR =1.30E-04) and PF-(FDR =9.24E-06)groups. We observed 71 lncRNA/nearby mRNA pairs showing differential expression under PF conditions. There were 90 mRNAs and 264 lncRNAs strongly correlated between the PF group and differentially expressed transcripts from a comparison of activated and quiescent HSCs, suggesting that some of the transcriptomic changes occurring in response to PF overlap with HSC activation. CONCLUSION: The results reported here have implications for dietary modifications in the prevention and treatment of NAFLD.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Fibrosis/genética , Fructosa/farmacología , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Palmitatos/farmacología , Transcriptoma/efectos de los fármacos , Biología Computacional , Fibrosis/metabolismo , Fibrosis/patología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Edulcorantes/farmacología
17.
Endocrinology ; 161(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32776116

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) prevalence in women is increasing worldwide. Women of reproductive age have lower rates of NAFLD compared with men; however, this protection is lost following the menopausal transition when NAFLD prevalence in postmenopausal women becomes similar to or surpasses that in age-matched male counterparts. Ongoing epidemiological, clinical, and experimental studies indicate greater NAFLD risk and higher rates of severe hepatic fibrosis in postmenopausal women relative to premenopausal women, and that older women with NAFLD experience greater mortality than men. Investigations involving ovariectomized animal models demonstrate a causal relationship between estrogen deficiency and heightened susceptibility to the development of fatty liver and steatohepatitis, although dietary factors may exacerbate this complex relationship. The accumulated findings suggest that a better understanding of the interplay among menopausal status, metabolic comorbidities, and sex steroids in NAFLD pathogenesis is needed. Further, the mechanisms underlying the difference in NAFLD risk between postmenopausal and premenopausal women remain incompletely understood. The goals of this review are to summarize studies of NAFLD risk in postmenopausal women, discuss results from animal models of estrogen deficiency, and explore the development of NAFD within the context of altered sex hormone profiles resulting from the menopausal transition. Potential implications for the prevention, diagnosis, and treatment of NAFLD in this relatively understudied cohort are also addressed.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/terapia , Posmenopausia/fisiología , Adulto , Edad de Inicio , Animales , Técnicas de Diagnóstico Endocrino , Estrógenos/sangre , Estrógenos/deficiencia , Femenino , Humanos , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Prevalencia , Factores de Riesgo
18.
Mol Cell Biochem ; 469(1-2): 29-39, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32239421

RESUMEN

Bac Coronary artery disease (CAD) is the leading cause of death worldwide and most commonly develops as a result of atherosclerosis. ANGPTL8 is a secreted adipokine that regulates lipid metabolism and is associated with cardiometabolic diseases, including type 2 diabetes and CAD. However, the association between circulating ANGPTL8 levels and CAD is inconsistent among studies and the mechanism by which ANGPTL8 contributes to CAD development remains poorly understood. Here we sought to evaluate the relationship between ANGPTL8 levels and endothelial dysfunction and adipose tissue inflammation in CAD patients. Concentrations of ANGPTL8, adiponectin, TNF-α, IL6, hsCRP, ICAM-1, and VCAM-1 were measured by ELISA in serum samples from 192 CAD patients diagnosed with stenosis > 50% in at least one coronary artery by angiography and 71 individuals with normal heart function. Serum ANGPTL8 levels were significantly higher in CAD patients compared to controls (83.84 ± 23.25 ng/mL vs. 50.45 ± 17.73; p < 0.001), independent of adjustment for age, sex, BMI, smoking and statin use. ANGPTL8 could also differentiate CAD patients from controls with 82.3% specificity and 81.4% sensitivity (p < 0.001). Adiponectin levels were lower in CAD patients, while ICAM-1, VCAM-1, TNF-α, IL6, and hsCRP levels were higher compared to non-CAD controls (all p < 0.001). ANGPTL8 levels were associated with BMI in controls and with BMI, TG, and ICAM-1 in CAD patients. The presence of elevated ANGPTL8 levels in CAD patients and independent association with TG and ICAM-1 suggest a possible role related to endothelial dysfunction in the pathogenesis of atherosclerosis.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas Similares a la Angiopoyetina/sangre , Enfermedad de la Arteria Coronaria/sangre , Hormonas Peptídicas/sangre , Adiponectina/sangre , Tejido Adiposo/fisiopatología , Anciano , Proteína 8 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/genética , Índice de Masa Corporal , Proteína C-Reactiva/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/fisiopatología , Femenino , Humanos , Molécula 1 de Adhesión Intercelular/sangre , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Pacientes , Hormonas Peptídicas/genética , Triglicéridos/sangre , Factor de Necrosis Tumoral alfa/sangre , Molécula 1 de Adhesión Celular Vascular/sangre , Enfermedades Vasculares/metabolismo
19.
Biochem Biophys Rep ; 22: 100753, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32258441

RESUMEN

We previously reported dysregulated expression of liver-derived messenger RNA (mRNA) and long noncoding RNA (lncRNA) in patients with advanced fibrosis resulting from nonalcoholic fatty liver disease (NAFLD). Here we sought to identify changes in mRNA and lncRNA levels associated with activation of hepatic stellate cells (HSCs), the predominant source of extracellular matrix production in the liver and key to NAFLD-related fibrogenesis. We performed expression profiling of mRNA and lncRNA from LX-2 cells, an immortalized human HSC cell line, treated to induce phenotypes resembling quiescent and myofibroblastic states. We identified 1964 mRNAs (1377 upregulated and 587 downregulated) and 1460 lncRNAs (665 upregulated and 795 downregulated) showing statistically significant evidence (FDR ≤0.05) for differential expression (fold change ≥|2|) between quiescent and activated states. Pathway analysis of differentially expressed genes showed enrichment for hepatic fibrosis (FDR = 1.35E-16), osteoarthritis (FDR = 1.47E-14), and axonal guidance signaling (FDR = 1.09E-09). We observed 127 lncRNAs/nearby mRNA pairs showing differential expression, the majority of which were dysregulated in the same direction. A comparison of differentially expressed transcripts in LX-2 cells with RNA-sequencing results from NAFLD patients with or without liver fibrosis revealed 1047 mRNAs and 91 lncRNAs shared between the two datasets, suggesting that some of the expression changes occurring during HSC activation can be observed in biopsied human tissue. These results identify lncRNA and mRNA expression patterns associated with activated human HSCs that appear to recapitulate human NAFLD fibrosis.

20.
Cell Mol Life Sci ; 77(11): 2079-2090, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31760464

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a chronic, frequently progressive condition that develops in response to excessive hepatocyte fat accumulation (i.e., steatosis) in the absence of significant alcohol consumption. Liver steatosis develops as a result of imbalanced lipid metabolism, driven largely by increased rates of de novo lipogenesis and hepatic fatty acid uptake and reduced fatty acid oxidation and/or disposal to the circulation. Fructose is a naturally occurring simple sugar, which is most commonly consumed in modern diets in the form of sucrose, a disaccharide comprised of one molecule of fructose covalently bonded with one molecule of glucose. A number of observational and experimental studies have demonstrated detrimental effects of dietary fructose consumption not only on diverse metabolic outcomes such as insulin resistance and obesity, but also on hepatic steatosis and NAFLD-related fibrosis. Despite the compelling evidence that excessive fructose consumption is associated with the presence of NAFLD and may even promote the development and progression of NAFLD to more clinically severe phenotypes, the molecular mechanisms by which fructose elicits effects on dysregulated liver metabolism remain unclear. Emerging data suggest that dietary fructose may directly alter the expression of genes involved in lipid metabolism, including those that increase hepatic fat accumulation or reduce hepatic fat removal. The aim of this review is to summarize the current research supporting a role for dietary fructose intake in the modulation of transcriptomic and epigenetic mechanisms underlying the pathogenesis of NAFLD.


Asunto(s)
Azúcares de la Dieta/metabolismo , Epigénesis Genética , Fructosa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Metilación de ADN , Azúcares de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Fructosa/efectos adversos , Humanos , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA