Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(11): e0293422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37917606

RESUMEN

Delineating functionally normal variants from functionally abnormal variants in tumor suppressor proteins is critical for cancer surveillance, prognosis, and treatment options. BRCA1 is a protein that has many variants of uncertain significance which are not yet classified as functionally normal or abnormal. In vitro functional assays can be used to identify the functional impact of a variant when the variant has not yet been categorized through clinical observation. Here we employ a homology-directed repair (HDR) reporter assay to evaluate over 300 missense and nonsense BRCA1 variants between amino acid residues 1280 and 1576, which encompasses the coiled-coil and serine cluster domains. Functionally abnormal variants tended to cluster in residues known to interact with PALB2, which is critical for homology-directed repair. Multiplexed results were confirmed by singleton assay and by ClinVar database variant interpretations. Comparison of multiplexed results to designated benign or likely benign or pathogenic or likely pathogenic variants in the ClinVar database yielded 100% specificity and 100% sensitivity of the multiplexed assay. Clinicians can reference the results of this functional assay for help in guiding cancer treatment and surveillance options. These results are the first to evaluate this domain of BRCA1 using a multiplexed approach and indicate the importance of this domain in the DNA repair process.


Asunto(s)
Mutación Missense , Serina , Humanos , Serina/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas Supresoras de Tumor/genética , Reparación del ADN/genética , Reparación del ADN por Recombinación , Predisposición Genética a la Enfermedad
2.
PLoS Genet ; 19(8): e1010739, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37578980

RESUMEN

Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation. In the case of the breast and ovarian cancer specific tumor suppressor protein, BRCA1, pathogenic missense variants frequently score as loss of function in an assay for homology-directed repair (HDR) of DNA double-strand breaks. We previously published functional results using a multiplexed assay for 1056 amino acid substitutions residues 2-192 in the amino terminus of BRCA1. In this study, we have re-assessed the data from this multiplexed assay using an improved analysis pipeline. These new analysis methods yield functional scores for more variants in the first 192 amino acids of BRCA1, plus we report new results for BRCA1 amino acid residues 193-302. We now present the functional classification of 2172 BRCA1 variants in BRCA1 residues 2-302 using the multiplexed HDR assay. Comparison of the functional determinations of the missense variants with clinically known benign or pathogenic variants indicated 93% sensitivity and 100% specificity for this assay. The results from BRCA1 variants tested in this assay are a resource for clinical geneticists for evidence to evaluate VUS in BRCA1.


Asunto(s)
Proteína BRCA1 , Reparación del ADN por Recombinación , Femenino , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , ADN , Roturas del ADN de Doble Cadena , Predisposición Genética a la Enfermedad , Mutación Missense , Neoplasias Ováricas/genética , Proteínas Supresoras de Tumor/genética
3.
bioRxiv ; 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37090572

RESUMEN

Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation. In the case of the breast and ovarian cancer specific tumor suppressor protein, BRCA1, pathogenic missense variants frequently score as loss of function in an assay for homology-directed repair (HDR) of DNA double-strand breaks. We previously published functional results using a multiplexed assay for 1056 amino acid substitutions residues 2-192 in the amino terminus of BRCA1. In this study, we have re-assessed the data from this multiplexed assay using an improved analysis pipeline. These new analysis methods yield functional scores for more variants in the first 192 amino acids of BRCA1, plus we report new results for BRCA1 amino acid residues 193-302. We now present the functional classification of 2172 BRCA1 variants in BRCA1 residues 2-302 using the multiplexed HDR assay. Comparison of the functional determinations of the missense variants with clinically known benign or pathogenic variants indicated 93% sensitivity and 100% specificity for this assay. The results from BRCA1 variants tested in this assay are a resource for clinical geneticists for evidence to evaluate VUS in BRCA1 . AUTHOR SUMMARY: Most missense substitutions in BRCA1 are variants of unknown significance (VUS), and individuals with a VUS in BRCA1 cannot know from genetic information alone whether this variant predisposes to breast or ovarian cancer. We apply a multiplexed functional assay for homology directed repair of DNA double strand breaks to assess variant impact on this important BRCA1 protein function. We analyzed 2172 variants in the amino-terminus of BRCA1 and demonstrate that variants that are known as pathogenic have a loss of function in the DNA repair assay. Conversely, variants that are known to be benign are functionally normal in the multiplexed assay. We suggest that these functional determinations of BRCA1 variants can be used to augment the information that clinical cancer geneticists provide to patients who have a VUS in BRCA1 .

4.
Am J Hum Genet ; 109(4): 618-630, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35196514

RESUMEN

Pathogenic variants in BRCA1 are associated with a greatly increased risk of hereditary breast and ovarian cancer (HBOC). With the increased availability and affordability of genetic testing, many individuals have been identified with BRCA1 variants of uncertain significance (VUSs), which are individually detected in the population too infrequently to ascertain a clinical risk. Functional assays can be used to experimentally assess the effects of these variants. In this study, we used multiplexed DNA repair assays of variants in the BRCA1 carboxyl terminus to functionally characterize 2,271 variants for homology-directed repair function (HDR) and 1,427 variants for cisplatin resistance (CR). We found a high level of consistent results (Pearson's r = 0.74) in the two multiplexed functional assays with non-functional variants located within regions of the BRCA1 protein necessary for its tumor suppression activity. In addition, functional categorizations of variants tested in the multiplex HDR and CR assays correlated with known clinical significance and with other functional assays for BRCA1 (Pearson's r = 0.53 to 0.71). The results of the multiplex HDR and CR assays are useful resources for characterizing large numbers of BRCA1 VUSs.


Asunto(s)
Proteína BRCA1 , Neoplasias de la Mama , Roturas del ADN de Doble Cadena , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , ADN , Reparación del ADN , Femenino , Humanos , Mutación Missense
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA