Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angle Orthod ; 90(1): 77-84, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31403836

RESUMEN

OBJECTIVES: To (1) introduce a novel machine learning method and (2) assess maxillary structure variation in unilateral canine impaction for advancing clinically viable information. MATERIALS AND METHODS: A machine learning algorithm utilizing Learning-based multi-source IntegratioN frameworK for Segmentation (LINKS) was used with cone-beam computed tomography (CBCT) images to quantify volumetric skeletal maxilla discrepancies of 30 study group (SG) patients with unilaterally impacted maxillary canines and 30 healthy control group (CG) subjects. Fully automatic segmentation was implemented for maxilla isolation, and maxillary volumetric and linear measurements were performed. Analysis of variance was used for statistical evaluation. RESULTS: Maxillary structure was successfully auto-segmented, with an average dice ratio of 0.80 for three-dimensional image segmentations and a minimal mean difference of two voxels on the midsagittal plane for digitized landmarks between the manually identified and the machine learning-based (LINKS) methods. No significant difference in bone volume was found between impaction ([2.37 ± 0.34] [Formula: see text] 104 mm3) and nonimpaction ([2.36 ± 0.35] [Formula: see text] 104 mm3) sides of SG. The SG maxillae had significantly smaller volumes, widths, heights, and depths (P < .05) than CG. CONCLUSIONS: The data suggest that palatal expansion could be beneficial for those with unilateral canine impaction, as underdevelopment of the maxilla often accompanies that condition in the early teen years. Fast and efficient CBCT image segmentation will allow large clinical data sets to be analyzed effectively.


Asunto(s)
Aprendizaje Automático , Ortodoncia , Técnica de Expansión Palatina , Tomografía Computarizada de Haz Cónico Espiral , Diente Impactado , Adolescente , Tomografía Computarizada de Haz Cónico , Constricción , Diente Canino , Humanos , Incisivo , Maxilar
2.
J Stem Cell Res Ther ; 7(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29354319

RESUMEN

Dopamine (DA) is a well-known neurotransmitter and critical element in the mussel adhesive protein that has gained increasing attention for its role in cellular growth enhancement in biomaterials, including cellular adhesion improvement. As the mechanism underlying this remains unclear, the objective of this study was to explore the effects of DA on the adhesion properties of bone marrow derived rat mesenchymal stem cells (rMSCs) using an hydroxyapatite gelatin nanocomposite biomaterial and to test whether the effects are mediated through various endogenously expressed DA receptors. Primary rMSCs were pretreated with D1-like antagonist, D2-like antagonist, or a combination of these antagonists followed by treatment with 50 µM DA and cellular adhesion quantification at 0.5, 1, 2 and 4 hours post DA addition. DA was found to increase rMSC adhesion and spreading at the 0.5 hour time-point and the dopaminergic effect on cell adhesion was partially blocked by DA antagonists. In addition, the D1-like and D2-like antagonists appeared to have a similar effect on rMSCs. Immunofluorescent staining indicated that the rMSC spreading area was significantly increased in the DA treated group versus the control group. Treatment of the D1-like DA antagonists with DA revealed that the actin filaments of rMSCs could not connect the membrane with the nucleus. In summary, DA was found to enhance early rMSC adhesion partially via DA receptor activation.

3.
J Tissue Eng ; 7: 2041731416680306, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28228929

RESUMEN

Decellularization is a promising new method to prepare natural matrices for tissue regeneration. Successful decellularization has been reported using various tissues including skin, tendon, and cartilage, though studies using hard tissue such as bone are lacking. In this study, we aimed to define the optimal experimental parameters to decellularize natural bone matrix using 0.5% sodium dodecyl sulfate and 0.1% NH4OH. Then, the effects of decellularized bone matrix on rat mesenchymal stem cell proliferation, osteogenic gene expression, and osteogenic differentiations in a two-dimensional culture system were investigated. Decellularized bone was also evaluated with regard to cytotoxicity, biochemical, and mechanical characteristics in vitro. Evidence of complete decellularization was shown through hematoxylin and eosin staining and DNA measurements. Decellularized bone matrix displayed a cytocompatible property, conserved structure, mechanical strength, and mineral content comparable to natural bone. To study new bone formation, implantation of decellularized bone matrix particles seeded with rat mesenchymal stem cells was conducted using an orthotopic in vivo model. After 3 months post-implantation into a critical-sized defect in rat calvaria, new bone was formed around decellularized bone matrix particles and also merged with new bone between decellularized bone matrix particles. New bone formation was analyzed with micro computed tomography, mineral apposition rate, and histomorphometry. Decellularized bone matrix stimulated mesenchymal stem cell proliferation and osteogenic differentiation in vitro and in vivo, achieving effective bone regeneration and thereby serving as a promising biological bone graft.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...