Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38710235

RESUMEN

BACKGROUND: LCP1 encodes L-plastin, an actin-bundling protein primarily expressed in hematopoietic cells. In mouse and fish models, LCP1 deficiency has been shown to result in hematologic and immune defects. OBJECTIVE: This study aimed to determine the nature of a human inborn error of immunity resulting from a novel genetic variant of LCP1. METHODS: We performed genetic, protein, and cellular analysis of PBMCs from a kindred with apparent autosomal dominant immune deficiency. We identified a candidate causal mutation in LCP1, which we evaluated by engineering the orthologous mutation in mice and Jurkat cells. RESULTS: A splice-site variant in LCP1 segregated with lymphopenia, neutropenia, and thrombocytopenia. The splicing defect resulted in at least 2 aberrant transcripts, producing an in-frame deletion of 24 nucleotides, and a frameshift deletion of exon 8. Cellular analysis of the kindred revealed a proportionate reduction of T and B cells and a mild expansion of transitional B cells. Similarly, mice carrying the orthologous genetic variant exhibited the same in-frame aberrant transcript, reduced expression Lcp1 and gene dose-dependent leukopenia, mild thrombocytopenia, and lymphopenia, with a significant reduction of T-cell populations. Functional analysis revealed that LCP1c740-1G>A confers a defect in platelet development and function with aberrant spreading on collagen. Immunologic analysis revealed defective actin organization in T cells, reduced migration of PBMCs from patients, splenocytes from mutant mice, and a mutant Jurkat cell line in response to CXCL12; impaired germinal center B-cell expansion after immunization; and reduced cytokinesis during T cell proliferation. CONCLUSIONS: We describe a unique human hematopoietic defect affecting neutrophils, lymphocytes, and platelets arising from partial LCP1 deficiency.

2.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638777

RESUMEN

The mechanisms of neural crest cell induction and specification are highly conserved among vertebrate model organisms, but how similar these mechanisms are in mammalian neural crest cell formation remains open to question. The zinc finger of the cerebellum 1 (ZIC1) transcription factor is considered a core component of the vertebrate gene regulatory network that specifies neural crest fate at the neural plate border. In mouse embryos, however, Zic1 mutation does not cause neural crest defects. Instead, we and others have shown that murine Zic2 and Zic5 mutate to give a neural crest phenotype. Here, we extend this knowledge by demonstrating that murine Zic3 is also required for, and co-operates with, Zic2 and Zic5 during mammalian neural crest specification. At the murine neural plate border (a region of high canonical WNT activity) ZIC2, ZIC3, and ZIC5 function as transcription factors to jointly activate the Foxd3 specifier gene. This function is promoted by SUMOylation of the ZIC proteins at a conserved lysine immediately N-terminal of the ZIC zinc finger domain. In contrast, in the lateral regions of the neurectoderm (a region of low canonical WNT activity) basal ZIC proteins act as co-repressors of WNT/TCF-mediated transcription. Our work provides a mechanism by which mammalian neural crest specification is restricted to the neural plate border. Furthermore, given that WNT signaling and SUMOylation are also features of non-mammalian neural crest specification, it suggests that mammalian neural crest induction shares broad conservation, but altered molecular detail, with chicken, zebrafish, and Xenopus neural crest induction.


Asunto(s)
Embrión de Mamíferos/embriología , Cresta Neural/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Transcripción Genética , Vía de Señalización Wnt , Animales , Embrión de Mamíferos/citología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Transgénicos , Cresta Neural/citología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética
3.
J Cell Sci ; 134(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771929

RESUMEN

Zinc finger of the cerebellum (Zic) proteins act as classic transcription factors to promote transcription of the Foxd3 gene during neural crest cell specification. Additionally, they can act as co-factors that bind proteins from the T-cell factor/lymphoid enhancing factor (TCF/LEF) family (TCFs) to repress WNT-ß-catenin-dependent transcription without contacting DNA. Here, we show that ZIC activity at the neural plate border is influenced by WNT-dependent SUMOylation. In the presence of high canonical WNT activity, a lysine residue within the highly conserved zinc finger N-terminally conserved (ZF-NC) domain of ZIC5 is SUMOylated, which reduces formation of the ZIC-TCF co-repressor complex and shifts the balance towards transcription factor function. The modification is crucial in vivo, as a ZIC5 SUMO-incompetent mouse strain exhibits neural crest specification defects. This work reveals the function of the ZF-NC domain within ZIC, provides in vivo validation of target protein SUMOylation and demonstrates that WNT-ß-catenin signalling directs transcription at non-TCF DNA-binding sites. Furthermore, it can explain how WNT signals convert a broad region of Zic ectodermal expression into a restricted region of neural crest cell specification.


Asunto(s)
Cresta Neural , Sumoilación , Animales , Diferenciación Celular , Ratones , Cresta Neural/metabolismo , Factores de Transcripción TCF/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
Sci Rep ; 10(1): 13130, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753700

RESUMEN

The ZIC proteins are a family of transcription regulators with a well-defined zinc finger DNA-binding domain and there is evidence that they elicit functional DNA binding at a ZIC DNA binding site. Little is known, however, regarding domains within ZIC proteins that confer trans-activation or -repression. To address this question, a new cell-based trans-activation assay system suitable for ZIC proteins in HEK293T cells was constructed. This identified two previously unannotated evolutionarily conserved regions of ZIC3 that are necessary for trans-activation. These domains are found in all Subclass A ZIC proteins, but not in the Subclass B proteins. Additionally, the Subclass B proteins fail to elicit functional binding at a multimerised ZIC DNA binding site. All ZIC proteins, however, exhibit functional binding when the ZIC DNA binding site is embedded in a multiple transcription factor locus derived from ZIC target genes in the mouse genome. This ability is due to several domains, some of which are found in all ZIC proteins, that exhibit context dependent trans-activation or -repression activity. This knowledge is valuable for assessing the likely pathogenicity of variant ZIC proteins associated with human disorders and for determining factors that influence functional transcription factor binding.


Asunto(s)
Regulación de la Expresión Génica , Genes Reporteros , Elementos de Respuesta , Factores de Transcripción , Transcripción Genética , Células HEK293 , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Mamm Genome ; 29(9-10): 656-662, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30094508

RESUMEN

Quantitative reverse transcriptase PCR (RT-qPCR), a powerful and efficient means of rapidly comparing gene expression between experimental conditions, is routinely used as a phenotyping tool in developmental biology. The accurate comparison of gene expression across multiple embryonic stages requires normalisation to reference genes that have stable expression across the time points to be examined. As the embryo and its constituent tissues undergo rapid growth and differentiation during development, reference genes known to be stable across some time points cannot be assumed to be stable across all developmental stages. The immediate post-implantation events of gastrulation and patterning are characterised by a rapid expansion in cell number and increasing specialisation of cells. The optimal reference genes for comparative gene expression studies at these specific stages have not been experimentally identified. In this study, the expression of five commonly used reference genes (H2afz, Ubc, Actb, Tbp and Gapdh) was measured across murine gastrulation and patterning (6.5-9.5 dpc) and analysed with the normalisation tools geNorm, Bestkeeper and Normfinder. The results, validated by RT-qPCR analysis of two genes with well-documented expression patterns across these stages, indicated the best strategy for RT-qPCR studies spanning murine gastrulation and patterning utilises the concurrent reference genes H2afz and Ubc.


Asunto(s)
Tipificación del Cuerpo/genética , Gastrulación/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Animales , Femenino , Perfilación de la Expresión Génica , Genes del Desarrollo/genética , Ratones , Ratones Endogámicos C3H , Reproducibilidad de los Resultados , Programas Informáticos
6.
Adv Exp Med Biol ; 1046: 179-207, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29442323

RESUMEN

The five murine Zic genes encode multifunctional transcriptional regulator proteins important for a large number of processes during embryonic development. The genes and proteins are highly conserved with respect to the orthologous human genes, an attribute evidently mirrored by functional conservation, since the murine and human genes mutate to give the same phenotypes. Each ZIC protein contains a zinc finger domain that participates in both protein-DNA and protein-protein interactions. The ZIC proteins are capable of interacting with the key transcriptional mediators of the SHH, WNT and NODAL signalling pathways as well as with components of the transcriptional machinery and chromatin-modifying complexes. It is possible that this diverse range of protein partners underlies characteristics uncovered by mutagenesis and phenotyping of the murine Zic genes. These features include redundant and unique roles for ZIC proteins, regulatory interdependencies amongst family members and pleiotropic Zic gene function. Future investigations into the complex nature of the Zic gene family activity should be facilitated by recent advances in genome engineering and functional genomics.


Asunto(s)
Familia de Multigenes/fisiología , Transducción de Señal/fisiología , Factores de Transcripción , Transcripción Genética/fisiología , Dedos de Zinc/fisiología , Animales , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...