Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4887, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849368

RESUMEN

For di-nitroaromatics hydrogenation, it is a challenge to achieve the multi-step hydrogenation with high activity and selectivity due to the complexity of the process involving two nitro groups. Consequently, many precious metal catalysts suffer from low activity for this multi-step hydrogenation reaction. Herein, we employ a fully exposed Pt clusters catalyst consisting of an average of four Pt atoms on nanodiamond@graphene (Ptn/ND@G), demonstrating excellent catalytic performance for the multi-step hydrogenation of 2,4-dinitrotoluene. The TOF (40647 h-1) of Ptn/ND@G is significantly superior to that of single Pt atoms catalyst, Pt nanoparticles catalyst, and even all the known catalysts. Density functional theory calculations and absorption experiments reveal that the synergetic interaction between the multiple active sites of Ptn/ND@G facilitate the co-adsorption/activation of reactants and H2, as well as the desorption of intermediates/products, which is the key for the higher catalytic activity than single Pt atoms catalyst and Pt nanoparticles catalyst.

2.
Toxics ; 12(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38787122

RESUMEN

Sodium p-perfluorous nonenoxybenzene sulfonate (OBS) is one of the key alternatives to perfluoroalkyl substances (PFASs). Its widespread tendency has increased extensive contamination in the aquatic environment. However, the present treatment technology for OBS exhibited insignificant adsorption capacity and long adsorption time. In this study, three proportions (1:5, 3:5, and 10:1) of chitosan-modified amino-driven graphene oxide (CS-GO) were innovated to strengthen the OBS adsorption capacity, compared with graphene oxide (GO) and graphene (GH). Through the characterization of SEM, BET, and FTIR, it was discovered that CS was synthetized on GO surfaces successfully with a low specific surface area. Subsequently, batch single influence factor studies on OBS removal from simulated wastewater were investigated. The optimum removal efficiency of OBS could be achieved up to 95.4% within 2 h when the adsorbent was selected as CS-GO (10:1), the dosage was 2 mg, and the pH was 3. The addition of inorganic ions could promote the adsorption efficiency of OBS. In addition, CS-GO presented the maximum adsorption energy due to additional functional groups of -NH3, and electrostatic interaction was the foremost motive for improving the adsorption efficiency of OBS. Moreover, OBS exhibited the fastest diffusion coefficient in the CS-GO-OBS solution, which is consistent with the fitting results of adsorption kinetics.

3.
J Am Chem Soc ; 145(38): 20936-20942, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37703050

RESUMEN

The exploration of non-noble metal catalysts for alkane dehydrogenation and their catalytic mechanisms is the priority in catalysis research. Here, we report a high-density coordinatively unsaturated Zn cation (Zncus) catalyst for the direct dehydrogenation (DDH) of ethylbenzene (EB) to styrene (ST). The catalyst demonstrated good catalytic performance (∼40% initial EB conversion rate and >98% ST selectivity) and excellent regeneration ability in the reaction, which is attributed to the high-density (HD) distribution and high-stability structure of Zncus active sites on the surface of zinc silicate (HD-Zncus@ZS). Density functional theory (DFT) calculations further illustrated the reaction pathway and intermediates, supporting that the Zncus sites can efficiently activate the C-H bond of ethyl on ethylbenzene. Developing the high-density Zncus catalyst and exploring the catalytic mechanism laid a good foundation for designing practical non-noble metal catalysts.

5.
Nat Commun ; 14(1): 2588, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147403

RESUMEN

Single-site pincer-ligated iridium complexes exhibit the ability for C-H activation in homogeneous catalysis. However, instability and difficulty in catalyst recycling are inherent disadvantages of the homogeneous catalyst, limiting its development. Here, we report an atomically dispersed Ir catalyst as the bridge between homogeneous and heterogeneous catalysis, which displays an outstanding catalytic performance for n-butane dehydrogenation, with a remarkable n-butane reaction rate (8.8 mol·gIr-1·h-1) and high butene selectivity (95.6%) at low temperature (450 °C). Significantly, we correlate the BDH activity with the Ir species from nanoscale to sub-nanoscale, to reveal the nature of structure-dependence of catalyst. Moreover, we compare Ir single atoms with Pt single atoms and Pd single atoms for in-depth understanding the nature of metal-dependence at the atomic level. From experimental and theoretical calculations results, the isolated Ir site is suitable for both reactant adsorption/activation and product desorption. Its remarkable dehydrogenation capacity and moderate adsorption behavior are the key to the outstanding catalytic activity and selectivity.

6.
Chem Commun (Camb) ; 59(38): 5693-5696, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37083012

RESUMEN

A simple and efficient strategy was developed for the synthesis of Pd single-atom catalysts (PdSA/G) by nitric acid vapor-assisted redispersion. The as-prepared PdSA/G displayed robust catalytic performance in the selective hydrogenation reaction of benzaldehyde. This work paves a new way for the design of supported Pd single-atom catalysts.

7.
Small ; 18(33): e2203283, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35871548

RESUMEN

Exploring antibacterial nanomaterials with excellent catalytic antibacterial properties has always been a hot research topic. However, the construction of nanomaterials with robust antibacterial activity at the atomic level remains a great challenge. Here a fully-exposed Pd cluster atomically-dispersed on nanodiamond-graphene (Pdn /ND@G) with excellent catalytic antibacterial properties is reported. The fully-exposed Pd cluster nanozyme provides atomically-dispersed Pd cluster sites that facilitate the activation of oxygen. Notably, the oxidase-like catalytic performance of the fully-exposed Pd cluster nanozyme is much higher than that of Pd single-atom oxidase mimic, Pd nanoparticles oxidase mimic and even the previously reported palladium-based oxidase mimics. Under the density functional theory (DFT) calculations, the Pd cluster sites can efficiently catalyze the decomposition of oxygen to generate reactive oxygen species, resulting in strong antibacterial properties. This research provides a valuable insight to the design of novel oxidase mimic and antibacterial nanomaterial.


Asunto(s)
Antibacterianos , Nanoestructuras , Antibacterianos/farmacología , Catálisis , Oxidorreductasas , Oxígeno
8.
Adv Mater ; 34(20): e2110455, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35305275

RESUMEN

Selective hydrogenation of alkynes to alkenes plays a crucial role in the synthesis of fine chemicals. However, how to achieve high selectivity and effective separation of the catalyst and substrate while obtaining high activity is the key for this reaction. In this work, a Pd single-atom catalyst is anchored to the shell of magnetic core-shell particles that consist of a Ni-nanoparticles core and a graphene sheets shell (Ni@G) for semi-hydrogenation of phenylacetylene, delivering 93% selectivity to styrene at full conversion with a robust turnover frequency of 7074 h-1 under mild reaction conditions (303 K, 2 bar H2 ). Moreover, the catalyst can be recovered promptly from the liquid phase due to its magnetic separability, which makes it present good stability for enduring five cycles. Experimental and theoretical investigations reveal that H2 and substrates are activated by atomically dispersed Pd atoms and Ni@G hybrid support, respectively. The hydrogenation reaction occurs on the surface of Ni@G via hydrogen spillover from the metal to the support. Such a strategy opens an avenue for designing highly active, selective, and magnetically recyclable catalysts for selective hydrogenation in liquid reaction systems.

9.
J Am Chem Soc ; 144(8): 3535-3542, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35107999

RESUMEN

Identification of catalytic active sites is pivotal in the design of highly effective heterogeneous metal catalysts, especially for structure-sensitive reactions. Downsizing the dimension of the metal species on the catalyst increases the dispersion, which is maximized when the metal exists as single atoms, namely, single-atom catalysts (SACs). SACs have been reported to be efficient for various catalytic reactions. We show here that the Pt SACs, although with the highest metal atom utilization efficiency, are totally inactive in the cyclohexane (C6H12) dehydrogenation reaction, an important reaction that could enable efficient hydrogen transportation. Instead, catalysts enriched with fully exposed few-atom Pt ensembles, with a Pt-Pt coordination number of around 2, achieve the optimal catalytic performance. The superior performance of a fully exposed few-atom ensemble catalyst is attributed to its high d-band center, multiple neighboring metal sites, and weak binding of the product.

10.
Chem Commun (Camb) ; 57(88): 11591-11603, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34657938

RESUMEN

Atomically dispersed metal catalysts (ADMCs) have attracted increasing interest in the field of heterogeneous catalysis. As sub-nanometric catalysts, ADMCs have exhibited remarkable catalytic performance in many reactions. ADMCs are classified into two categories: single atom catalysts (SACs) and atomically dispersed clusters with a few atoms. To stabilize the highly active ADMCs, nanodiamond (ND) and its derivatives (NDDs) are promising supports. In this Feature Article, we have introduced the advantages of NDDs with a highly curved surface and tunable surface properties. The controllable defective sites and oxygen functional groups are known as the anchoring sites for ADMCs. Tunable surface acid-base properties enable ADMCs supported on NDDs to exhibit unique selectivity towards target products and an extended lifetime in many reactions. In addition, we have firstly overviewed the recent advances in the synthesis strategies for effectively fabricating ADMCs on NDDs, and further discussed how to achieve the atomic dispersion of metal precursors and stabilize the as-formed metal atoms against migration and agglomeration based on NDDs. And then, we have also systematically summarized the advantages of ADMCs supported on NDDs in reactions, including hydrogenation, dehydrogenation, aerobic oxidation and electrochemical reaction. These reactions can also effectively guide the design of ADMCs. The recent progress in understanding the effect of structure of active centers and metal-support interactions (MSIs) on the catalytic performance of ADMCs is particularly highlighted. At last, the possible research directions in ADMCs are forecasted.

11.
Chem Commun (Camb) ; 56(26): 3789-3792, 2020 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-32129329

RESUMEN

An effective method to study the active sites for carbocatalysis is proposed based on designing a carbon catalyst in the absence of metal as the growth catalyst. The results suggest that the oxygenated groups on the aromatic carbons are mainly responsible for the catalytic reduction of nitrobenzene and some other reactions.

12.
Chem Commun (Camb) ; 54(79): 11168-11171, 2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30229257

RESUMEN

Platinum nanoparticles (Pt NPs) immobilized on a N-doped graphene@Al2O3 hybrid support (Al2O3@CNx) were synthesized and employed for low temperature CO oxidation. The superior catalytic activity was attributed to a strong metal-support interaction between Pt NPs and the N-doped graphene surface which was also confirmed in the direct dehydrogenation reaction.

13.
ChemSusChem ; 11(3): 536-541, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29292853

RESUMEN

Activated carbon (AC) has been widely used in the catalysis field because of its low cost, scalable production, high specific surface area, and abundant exposed edge. Because of the amorphous structure, traditional AC is unstable in presence of O2 at high temperature, which hinders the application of AC catalysts in oxidative dehydrogenation (ODH) of alkanes. Here, partially graphitic AC decorated with few-layer graphene is facilely fabricated by simple high-temperature calcination. The graphitic transformation significantly enhances the antioxidation property, long-term stability of AC during the ODH reaction, and especially dramatically increases the graphitic edge areas in which the active ketonic carbonyl groups are selectively formed in ODH reactions. A high reactivity with 41.5 % selectivity and 13.2 % yield to C4 alkenes were obtained at 450 °C over the optimized catalyst, which is superior to all the previously reported carbon catalysts and shows a great potential for industrial application.


Asunto(s)
Carbono/química , Grafito/química , Butanos/química , Catálisis , Calor , Hidrógeno/química , Hidrogenación , Metales/química , Oxidación-Reducción
14.
Chem Commun (Camb) ; 53(82): 11322-11325, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28967003

RESUMEN

MgO-rGO hybrid catalysts with a sandwich structure have been successfully prepared through a simple "solid-solid" method. Obviously enhanced reactivity is observed on the hybrid catalysts in ethylbenzene dehydrogenation reactions, which is attributed to the sandwich structure and the synergistic effect between MgO and rGO.

15.
ChemSusChem ; 10(2): 353-358, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28000383

RESUMEN

Carbon nanotubes (CNTs) were used in oxidative dehydrogenation (ODH) reactions. Quinone groups on the CNT surface were identified as active sites for the dehydrogenation pathway. Liquid-phase oxidation with HNO3 is one way to generate various oxygen functionalities on the CNT surface but it produces a large amount of acid waste, limiting its industrial application. Here, a facile and efficient oxidative method to prepare highly selective CNT catalysts for ODH of n-butane is reported. Magnesium nitrate salts as precursors were used to produce defect-rich CNTs through solid-phase oxidation. Skeleton defects induced on the CNT surface resulted in the selective formation of quinone groups active for the selective dehydrogenation. The as-prepared catalyst exhibited a considerable selectivity (58 %) to C4 olefins, which is superior to that of CNTs oxidized with liquid HNO3 . Through the introduction of MgO nanoparticles on the CNT surface, the desorption of alkenes can be accelerated dramatically, thus enhancing the selectivity. This study provides an attractive way to develop new nanocarbon catalysts.


Asunto(s)
Nanotubos de Carbono/química , Butanos/química , Catálisis , Hidrogenación , Ácido Nítrico/química , Oxidación-Reducción , Propiedades de Superficie
16.
ChemSusChem ; 9(7): 662-6, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26871428

RESUMEN

For the first time, significant improvement of the catalytic performance of nanodiamonds was achieved for the dehydrogenation of ethylbenzene to styrene under oxygen-lean conditions. We demonstrated that the combination of direct dehydrogenation and oxidative dehydrogenation indeed occurred on the nanodiamond surface throughout the reaction system. It was found that the active sp(2)-sp(3) hybridized nanostructure was well maintained after the long-term test and the active ketonic carbonyl groups could be generated in situ. A high reactivity with 40% ethylbenzene conversion and 92% styrene selectivity was obtained over the nanodiamond catalyst under oxygen-lean conditions even after a 240 h test, demonstrating the potential of this procedure for application as a promising industrial process for the ethylbenzene dehydrogenation to styrene without steam protection.


Asunto(s)
Derivados del Benceno/química , Nanodiamantes , Oxígeno/química , Estireno/química , Hidrogenación , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Termogravimetría
17.
Chem Commun (Camb) ; 51(16): 3423-5, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25625943

RESUMEN

Reduced porous graphene oxide as a metal free catalyst was selected for the oxidative dehydrogenation of ethylbenzene to styrene. It showed the best catalytic performance compared with other carbon materials (routinely reduced graphene oxide, graphite powder and oxidized carbon nanotubes) and commercial iron oxide.

18.
Chem Commun (Camb) ; 50(58): 7810-2, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24905905

RESUMEN

A novel nanodiamond/CNT-SiC monolith catalyst has been prepared by a facile two-step approach. The as-synthesized monolith afforded high activity and stability for ethylbenzene direct dehydrogenation to styrene, showing its potential application as a metal free catalyst in gaseous catalytic reactions.


Asunto(s)
Derivados del Benceno/química , Compuestos Inorgánicos de Carbono/química , Nanodiamantes/química , Nanotubos de Carbono/química , Compuestos de Silicona/química , Estireno/síntesis química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...