Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 116, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715020

RESUMEN

BACKGROUND: Structural variations (SVs) have significant impacts on complex phenotypes by rearranging large amounts of DNA sequence. RESULTS: We present a comprehensive SV catalog based on the whole-genome sequence of 1060 pigs (Sus scrofa) representing 101 breeds, covering 9.6% of the pig genome. This catalog includes 42,487 deletions, 37,913 mobile element insertions, 3308 duplications, 1664 inversions, and 45,184 break ends. Estimates of breed ancestry and hybridization using genotyped SVs align well with those from single nucleotide polymorphisms. Geographically stratified deletions are observed, along with known duplications of the KIT gene, responsible for white coat color in European pigs. Additionally, we identify a recent SINE element insertion in MYO5A transcripts of European pigs, potentially influencing alternative splicing patterns and coat color alterations. Furthermore, a Yorkshire-specific copy number gain within ABCG2 is found, impacting chromatin interactions and gene expression across multiple tissues over a stretch of genomic region of ~200 kb. Preliminary investigations into SV's impact on gene expression and traits using the Pig Genotype-Tissue Expression (PigGTEx) data reveal SV associations with regulatory variants and gene-trait pairs. For instance, a 51-bp deletion is linked to the lead eQTL of the lipid metabolism regulating gene FADS3, whose expression in embryo may affect loin muscle area, as revealed by our transcriptome-wide association studies. CONCLUSIONS: This SV catalog serves as a valuable resource for studying diversity, evolutionary history, and functional shaping of the pig genome by processes like domestication, trait-based breeding, and adaptive evolution.


Asunto(s)
Genoma , Variación Estructural del Genoma , Animales , Sus scrofa/genética , Polimorfismo de Nucleótido Simple , Porcinos/genética , Mapeo Cromosómico
2.
Nat Genet ; 56(1): 112-123, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177344

RESUMEN

The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Porcinos/genética , Animales , Humanos , Genotipo , Fenotipo , Análisis de Secuencia de ARN
3.
Anim Genet ; 55(2): 265-276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185881

RESUMEN

In livestock, genome-wide association studies (GWAS) are usually conducted in a single population (single-GWAS) with limited sample size and detection power. To enhance the detection power of GWAS, meta-analysis of GWAS (meta-GWAS) and mega-analysis of GWAS (mega-GWAS) have been proposed to integrate data from multiple populations at the level of summary statistics or individual data, respectively. However, there is a lack of comparison for these different strategies, which makes it difficult to guide the best practice of GWAS integrating data from multiple study populations. To maximize the comparison of different association analysis strategies across multiple populations, we conducted single-GWAS, meta-GWAS, and mega-GWAS for the backfat thickness of 100 kg (BFT_100) and days to 100 kg (DAYS_100) within each of the three commercial pig breeds (Duroc, Yorkshire, and Landrace). Based on controlling the genome inflation factor to one, we calculated corrected p-values (pC ). In Yorkshire, with the largest sample size, mega-GWAS, meta-GWAS and single-GWAS detected 149, 38 and 20 significant SNPs (pC < 1E-5) associated with BFT_100, as well as 26, four, and one QTL, respectively. Among them, pC of SNPs from mega-GWAS was the lowest, followed by meta-GWAS and single-GWAS. The correlation of pC among the three GWAS strategies ranged from 0.60 to 0.75 and the correlation of SNP effect values between meta-GWAS and mega-GWAS was 0.74, all showing good agreement. Collectively, even though there are differences in the integration of individual data or summary statistics, integrating data from multiple populations is an effective means of genetic argument for complex traits, especially mega-GWAS versus single-GWAS.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Porcinos , Animales , Polimorfismo de Nucleótido Simple , Herencia Multifactorial , Fenotipo
4.
Nucleic Acids Res ; 52(D1): D980-D989, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37956339

RESUMEN

To fully unlock the potential of pigs as both agricultural species for animal-based protein food and biomedical models for human biology and disease, a comprehensive understanding of molecular and cellular mechanisms underlying various complex phenotypes in pigs and how the findings can be translated to other species, especially humans, are urgently needed. Here, within the Farm animal Genotype-Tissue Expression (FarmGTEx) project, we build the PigBiobank (http://pigbiobank.farmgtex.org) to systematically investigate the relationships among genomic variants, regulatory elements, genes, molecular networks, tissues and complex traits in pigs. This first version of the PigBiobank curates 71 885 pigs with both genotypes and phenotypes from over 100 pig breeds worldwide, covering 264 distinct complex traits. The PigBiobank has the following functions: (i) imputed sequence-based genotype-phenotype associations via a standardized and uniform pipeline, (ii) molecular and cellular mechanisms underlying trait-associations via integrating multi-omics data, (iii) cross-species gene mapping of complex traits via transcriptome-wide association studies, and (iv) high-quality results display and visualization. The PigBiobank will be updated timely with the development of the FarmGTEx-PigGTEx project, serving as an open-access and easy-to-use resource for genetically and biologically dissecting complex traits in pigs and translating the findings to other species.


Asunto(s)
Bases de Datos Genéticas , Porcinos , Animales , Estudio de Asociación del Genoma Completo , Genotipo , Herencia Multifactorial , Fenotipo , Porcinos/genética , Multiómica
5.
BMC Genomics ; 24(1): 743, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053015

RESUMEN

BACKGROUND: Chinese indigenous pigs in Yunnan exhibit considerable phenotypic diversity, but their population structure and the biological interpretation of signatures of artificial selection require further investigation. To uncover population genetic diversity, migration events, and artificial selection signatures in Chinese domestic pigs, we sampled 111 Yunnan pigs from four breeds in Yunnan which is considered to be one of the centres of livestock domestication in China, and genotyped them using Illumina Porcine SNP60K BeadChip. We then leveraged multiple bioinformatics database tools to further investigate the signatures and associated complex traits. RESULTS: Population structure and migration analyses showed that Diannanxiaoer pigs had different genetic backgrounds from other Yunnan pigs, and Gaoligongshan may undergone the migration events from Baoshan and Saba pigs. Intriguingly, we identified a possible common target of sharing artificial selection on a 265.09 kb region on chromosome 5 in Yunnan indigenous pigs, and the genes on this region were associated with cardiovascular and immune systems. We also detected several candidate genes correlated with dietary adaptation, body size (e.g., PASCIN1, GRM4, ITPR2), and reproductive performance. In addition, the breed-sharing gene MMP16 was identified to be a human-mediated gene. Multiple lines of evidence at the mammalian genome, transcriptome, and phenome levels further supported the evidence for the causality between MMP16 variants and the metabolic diseases, brain development, and cartilage tissues in Chinese pigs. Our results suggested that the suppression of MMP16 would directly lead to inactivity and insensitivity of neuronal activity and skeletal development in Chinese indigenous pigs. CONCLUSION: In this study, the population genetic analyses and identification of artificial selection signatures of Yunnan indigenous pigs help to build an understanding of the effect of human-mediated selection mechanisms on phenotypic traits in Chinese indigenous pigs. Further studies are needed to fully characterize the process of human-mediated genes and biological mechanisms.


Asunto(s)
Metaloproteinasa 16 de la Matriz , Sus scrofa , Humanos , Porcinos/genética , Animales , Metaloproteinasa 16 de la Matriz/genética , China , Sus scrofa/genética , Genoma , Biología Computacional , Selección Genética , Polimorfismo de Nucleótido Simple
7.
Anim Genet ; 54(2): 113-122, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36461674

RESUMEN

Breed identification utilizing multiple information sources and methods is widely applicated in the field of animal genetics and breeding. Simultaneously, with the development of artificial intelligence, the integration of high-throughput genomic data and machine learning techniques is increasingly used for breed identification. In this context, we used 654 individuals from 15 pig breeds, evaluating the performance of machine learning and stacking ensemble learning classifiers, as well as the function of feature selection and anomaly detection in different scenarios. Our results showed that, when using a training set of 16 individuals per breed and 32 features (SNPs), the accuracy of breed identification with feature selection (eXtreme Gradient Boosting, XGBoost) could exceed 95.00% (nine breeds), and was improved by 7.04% over the results with random selection. For stacking ensemble learning, feature selection methods (including random selection method) were used before different base learners. When these base learners' training set had 16 individuals per breed and 32 features, the accuracy of stacking ensemble learning improved by 9.24% over the best base learner (nine breeds), but did not significantly increase the advantage over the models with XGBoost feature selection. When using a training set of 16 individuals and 512 features per breed, breed identification with anomaly detection (local outlier factor, LOF) and random selection could achieve an accuracy of 89.06% (15 breeds). These results show that machine learning could be an effective tool for breed identification and this study will also provide useful information for the application of machine learning in animal genetics and breeding.


Asunto(s)
Inteligencia Artificial , Polimorfismo de Nucleótido Simple , Animales , Porcinos , Algoritmos , Aprendizaje Automático , Genómica
8.
J Anim Sci Biotechnol ; 13(1): 99, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36127741

RESUMEN

BACKGROUND: As one of the most utilized commercial composite boar lines, Duroc pigs have been introduced to China and undergone strongly human-induced selection over the past decades. However, the efficiencies and limitations of previous breeding of Chinese Duroc pigs are largely understudied. The objective of this study was to uncover directional polygenic selection in the Duroc pig genome, and investigate points overlooked in the past breeding process. RESULTS: Here, we utilized the Generation Proxy Selection Mapping (GPSM) on a dataset of 1067 Duroc pigs with 8,766,074 imputed SNPs. GPSM detected a total of 5649 putative SNPs actively under selection in the Chinese Duroc pig population, and the potential functions of the selection regions were mainly related to production, meat and carcass traits. Meanwhile, we observed that the allele frequency of variants related to teat number (NT) relevant traits was also changed, which might be influenced by genes that had pleiotropic effects. First, we identified the direction of selection on NT traits by [Formula: see text], and further pinpointed large-effect genomic regions associated with NT relevant traits by selection signature and GWAS. Combining results of NT relevant traits-specific selection signatures and GWAS, we found three common genome regions, which were overlapped with QTLs related to production, meat and carcass traits besides "teat number" QTLs. This implied that there were some pleiotropic variants underlying NT and economic traits. We further found that rs346331089 has pleiotropic effects on NT and economic traits, e.g., litter size at weaning (LSW), litter weight at weaning (LWW), days to 100 kg (D100), backfat thickness at 100 kg (B100), and loin muscle area at 100 kg (L100) traits. CONCLUSIONS: The selected loci that we identified across methods displayed the past breeding process of Chinese Duroc pigs, and our findings could be used to inform future breeding decision.

9.
Animals (Basel) ; 11(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359120

RESUMEN

With the availability of high-density single-nucleotide polymorphism (SNP) data and the development of genotype imputation methods, high-density panel-based genomic prediction (GP) has become possible in livestock breeding. It is generally considered that the genomic estimated breeding value (GEBV) accuracy increases with the marker density, while studies have shown that the GEBV accuracy does not increase or even decrease when high-density panels were used. Therefore, in addition to the SNP number, other measurements of 'marker density' seem to have impacts on the GEBV accuracy, and exploring the relationship between the GEBV accuracy and the measurements of 'marker density' based on high-density SNP or whole-genome sequence data is important for the field of GP. In this study, we constructed different SNP panels with certain SNP numbers (e.g., 1 k) by using the physical distance (PhyD), genetic distance (GenD) and random distance (RanD) between SNPs respectively based on the high-density SNP data of a Germany Holstein dairy cattle population. Therefore, there are three different panels at a certain SNP number level. These panels were used to construct GP models to predict fat percentage, milk yield and somatic cell score. Meanwhile, the mean (d¯) and variance (σd2) of the physical distance between SNPs and the mean (r2¯) and variance (σr22) of the genetic distance between SNPs in each panel were used as marker density-related measurements and their influence on the GEBV accuracy was investigated. At the same SNP number level, the d¯ of all panels is basically the same, but the σd2, r2¯ and σr22 are different. Therefore, we only investigated the effects of σd2, r2¯ and σr22 on the GEBV accuracy. The results showed that at a certain SNP number level, the GEBV accuracy was negatively correlated with σd2, but not with r2¯ and σr22. Compared with GenD and RanD, the σd2 of panels constructed by PhyD is smaller. The low and moderate-density panels (< 50 k) constructed by RanD or GenD have large σd2, which is not conducive to genomic prediction. The GEBV accuracy of the low and moderate-density panels constructed by PhyD is 3.8~34.8% higher than that of the low and moderate-density panels constructed by RanD and GenD. Panels with 20-30 k SNPs constructed by PhyD can achieve the same or slightly higher GEBV accuracy than that of high-density SNP panels for all three traits. In summary, the smaller the variation degree of physical distance between adjacent SNPs, the higher the GEBV accuracy. The low and moderate-density panels construct by physical distance are beneficial to genomic prediction, while pruning high-density SNP data based on genetic distance is detrimental to genomic prediction. The results provide suggestions for the development of SNP panels and the research of genome prediction based on whole-genome sequence data.

10.
Front Cell Dev Biol ; 8: 565261, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195195

RESUMEN

The granulosa cell growth factor and apoptotic factor are two factors to determine follicular apoptosis. Whether ssc-miR-143-3p (MIR143) plays as an apoptosis factor in porcine granulosa cells (pGCs) remain unclear. This study tries to investigate what function of MIR143 is and how MIR143 gets these functions in pGCs from 3 to 5 mm medium-sized follicles. Firstly, 5' RACE was used to identify the structure of MIR143, and in situ hybridization, qPCR, and DNA pull-down were employed to exhibit the spatio-temporal expression and transcriptional regulation of MIR143. Furthermore, ELISA, Western blotting, and flow cytometry were adopted to explore the functions of MIR143 in pGCs. It was found that MIR143 was an exonic miRNA located in host gene LOC100514340 with an increasing expression during follicular growth. Moreover, MIR143 suppressed steroidogenesis related genes of HSD17ß4, ER1, and PTGS2, negatively regulating estrogen, androgen, progesterone, and prostaglandin. MIR143 induced the apoptosis via activation of BAX-dependent Caspase 3 signaling. Furthermore, H3K27me3 influenced the recruitment of transcription factors and binding proteins to repress MIR143 transcription. At last, H3K27me3 agonist with MIR143 inhibition activated steroidogenesis but repressed apoptosis. These findings suggest that H3K27me3-mediated MIR143 inhibition play a critical role in follicular atresia by regulating cell apoptosis and steroidogenesis, which will provide useful information for further investigations of H3K27me3-miediated MIR143 epigenetic regulation in follicular growth in mammals.

11.
J Dairy Sci ; 103(11): 10299-10310, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32952023

RESUMEN

As genotypic data are moving from SNP chip toward whole-genome sequence, the accuracy of genomic prediction (GP) exhibits a marginal gain, although all genetic variation, including causal genes, are contained in whole-genome sequence data. Meanwhile, genetic analyses on complex traits, such as genome-wide association studies, have identified an increasing number of genomic regions, including potential causal genes, which would be reliable prior knowledge for GP. Many studies have tried to improve the performance of GP by modifying the prediction model to incorporate prior knowledge. Although several plausible results have been obtained from model modification or strategy optimization, most of them were validated in a specific empirical population with a limited variety of genetic architecture for complex traits. An alternative approach is to use simulated genetic architecture with known causal genes (e.g., simulated causative SNP) to evaluate different GP models with given causal genes. Our objectives were to (1) evaluate the performance of GP under a variety of genetic architectures with a subset of known causal genes and (2) compare different GP models modified by highlighting causal genes and different strategies to weight causal genes. In this study, we simulated pseudo-phenotypes under a variety of genetic architectures based on the real genotypes and phenotypes of a dairy cattle population. Besides classical genomic best linear unbiased prediction, we evaluated 3 modified GP models that highlight causal genes as follows: (1) by treating them as fixed effects, (2) by treating them as a separate random component, and (3) by combining them into the genomic relationship matrix as random effects. Our results showed that highlighting the known causal genes, which explained a considerable proportion of genetic variance in the GP models, increased the predictive accuracy. Combining all given causal genes into the genomic relationship matrix was the optimal strategy under all the scenarios validated, and treating causal genes as a separate random component is also recommended, when more than 20% of genetic variance was explained by known causal genes. Moreover, assigning differential weights to each causal gene further improved the predictive accuracy.


Asunto(s)
Bovinos/genética , Genoma/genética , Genómica , Herencia Multifactorial/genética , Animales , Femenino , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Modelos Genéticos , Fenotipo , Secuenciación Completa del Genoma/veterinaria
12.
Front Genet ; 11: 243, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318090

RESUMEN

Poultry feed constitutes the largest cost in poultry production, estimated to be up to 70% of the total cost. Moreover, there is pressure on the poultry industry to increase production to meet the protein demand of humans and simultaneously reduce emissions to protect the environment. Therefore, improving feed efficiency plays an important role to improve profits and the environmental footprint in broiler production. In this study, using imputed whole-genome sequencing data, genome-wide association analysis (GWAS) was performed to identify single-nucleotide polymorphisms (SNPs) and genes associated with residual feed intake (RFI) and its component traits. Furthermore, a transcriptomic analysis between the high-RFI and the low-RFI groups was performed to validate the candidate genes from GWAS. The results showed that the heritability estimates of average daily gain (ADG), average daily feed intake (ADFI), and RFI were 0.29 (0.004), 0.37 (0.005), and 0.38 (0.004), respectively. Using imputed sequence-based GWAS, we identified seven significant SNPs and five candidate genes [MTSS I-BAR domain containing 1, folliculin, COP9 signalosome subunit 3, 5',3'-nucleotidase (mitochondrial), and gametocyte-specific factor 1] associated with RFI, 20 significant SNPs and one candidate gene (inositol polyphosphate multikinase) associated with ADG, and one significant SNP and one candidate gene (coatomer protein complex subunit alpha) associated with ADFI. After performing a transcriptomic analysis between the high-RFI and the low-RFI groups, both 38 up-regulated and 26 down-regulated genes were identified in the high-RFI group. Furthermore, integrating regional conditional GWAS and transcriptome analysis, ras-related dexamethasone induced 1 was the only overlapped gene associated with RFI, which also suggested that the region (GGA14: 4767015-4882318) is a new quantitative trait locus associated with RFI. In conclusion, using imputed sequence-based GWAS is an efficient method to identify significant SNPs and candidate genes in chicken. Our results provide valuable insights into the genetic mechanisms of RFI and its component traits, which would further improve the genetic gain of feed efficiency rapidly and cost-effectively in the context of marker-assisted breeding selection.

13.
Theriogenology ; 139: 36-42, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31362194

RESUMEN

Litter size is one of the most important economic traits for pig production as it is directly related to the production efficiency. As an important litter size trait in pigs, the number of piglets born alive at birth (NBA) receives widespread interests in the pig industry. However, traits of piglets born dead, including the number of stillborn piglets (NS) and the piglets mummified at birth (NM) should be noted to explain the loss of reproduction. Herein, in the present study, a total of 803 producing sows were sampled and 2807 farrowing records for NBA, NM, and NS traits were collected in a Duroc swine population. Subsequently, a genome-wide association study (GWAS) was performed for NBA, NS and NM in parity groups 1 to 5. In total, 10 putative regions were found associated with these traits. After stepwise conditional analyses around the putative regions, eight independent signals were ultimately identified for NBA, NS, and NM, and there were seven promising candidate genes related to these traits, including ARID1A, RXRG, NFATC4, ABTB2, GRAMD1B, NDRG1, and APC. Our findings contribute to the understanding of the significant genetic causes of piglets born alive and dead, and could have a positive effect on pig production efficiency and economic profits.


Asunto(s)
Nacimiento Vivo/veterinaria , Mortinato/veterinaria , Porcinos/genética , Animales , Genoma , Estudio de Asociación del Genoma Completo , Tamaño de la Camada/genética , Nacimiento Vivo/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Mortinato/genética , Porcinos/fisiología
14.
Animals (Basel) ; 9(6)2019 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-31208134

RESUMEN

To investigate the genetic diversity, population structure, extent of linkage disequilibrium (LD), effective population size (Ne), and selection signatures in indigenous pigs from Guangdong and Guangxi in China, 226 pigs belonging to ten diverse populations were genotyped using single nucleotide polymorphism (SNP) chips. The genetic divergence between Chinese and Western pigs was determined based on the SNP chip data. Low genetic diversity of Dahuabai (DHB), Luchuan (LC), Lantang (LT), and Meihua (MH) pigs, and introgression of Western pigs into Longlin (LL), MH, and Yuedonghei (YDH) pigs were detected. Analysis of the extent of LD showed that indigenous pigs had low LD when pairwise SNP distance was short and high LD when pairwise SNP distance was long. Effective population size analysis showed a rapid decrease for Chinese indigenous pigs, and some pig populations had a relatively small Ne. This result indicated the loss of genetic diversity in indigenous pigs, and introgression from Western commercial pigs. Selection signatures detected in this study overlapped with meat quality traits, such as drip loss, intramuscular fat content, meat color b*, and average backfat thickness. Our study deepened understanding of the conservation status and domestication of Chinese indigenous pigs.

15.
Genes (Basel) ; 10(5)2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067806

RESUMEN

South China indigenous pigs are famous for their superior meat quality and crude feed tolerance. Saba and Baoshan pigs without saddleback were located in the high-altitude area of Yunnan Province, while Tunchang and Ding'an pigs with saddleback were located in the low-altitude area of Hainan Province. Although these pigs are different in appearance, the underlying genetic differences have not been investigated. In this study, based on the single-nucleotide polymorphism (SNP) genotypes of 124 samples, both the cross-population extended haplotype homozygosity (XP-EHH) and the fixation index (FST) statistic were used to identify potential signatures of selection in these pig breeds. We found nine potential signatures of selection detected simultaneously by two methods, annotated 22 genes in Hainan pigs, when Baoshan pigs were used as the reference group. In addition, eleven potential signatures of selection detected simultaneously by two methods, annotated 24 genes in Hainan pigs compared with Saba pigs. These candidate genes were most enriched in GO: 0048015~phosphatidylinositol-mediated signaling and ssc00604: Glycosphingolipid biosynthesis-ganglio series. These selection signatures were likely to overlap with quantitative trait loci associated with meat quality traits. Furthermore, one potential selection signature, which was associated with different coat color, was detected in Hainan pigs. These results contribute to a better understanding of the underlying genetic architecture of South China indigenous pigs.


Asunto(s)
Porcinos/genética , Animales , China , Femenino , Masculino , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Selección Genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA