Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4442, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488103

RESUMEN

The synergy between free electrons and light has recently been leveraged to reach an impressive degree of simultaneous spatial and spectral resolution, enabling applications in microscopy and quantum optics. However, the required combination of electron optics and light injection into the spectrally narrow modes of arbitrary specimens remains a challenge. Here, we demonstrate microelectronvolt spectral resolution with a sub-nanometer probe of photonic modes with quality factors as high as 104. We rely on mode matching of a tightly focused laser beam to whispering gallery modes to achieve a 108-fold increase in light-electron coupling efficiency. By adapting the shape and size of free-space optical beams to address specific physical questions, our approach allows us to interrogate any type of photonic structure with unprecedented spectral and spatial detail.

2.
Nanoscale Adv ; 5(14): 3634-3645, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37441257

RESUMEN

Dense micron-sized electron plasmas, such as those generated upon irradiation of nanostructured metallic surfaces by intense femtosecond laser pulses, constitute a rich playground to study light-matter interactions, many-body phenomena, and out-of-equilibrium charge dynamics. Besides their fundamental interest, laser-induced plasmas hold great potential for the generation of localized terahertz radiation pulses. However, the underlying mechanisms ruling the formation and evolution of such plasmas are not yet well understood. Here, we develop a comprehensive microscopic theory to predictably describe the spatiotemporal dynamics of laser-pulse-induced plasmas. Through detailed analysis of electron emission, metal screening, and plasma cloud interactions, we investigate the spatial, temporal, and spectral characteristics of the so-generated terahertz fields, which can be extensively controlled through the metal morphology and the illumination conditions. We further describe the interaction with femtosecond electron beams to explain recent ultrafast electron microscopy experiments, whereby the position and temporal dependence of the observed electron acceleration permits assessing the associated terahertz field. Besides its potential application to the design of low-frequency light sources, our work contributes fundamental insight into the generation and dynamics of micron-scale electron plasmas and their interaction with ultrafast electron pulses.

3.
ACS Nano ; 17(4): 3657-3665, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36780289

RESUMEN

Understanding and actively controlling the spatiotemporal dynamics of nonequilibrium electron clouds is fundamental for the design of light and electron sources, high-power electronic devices, and plasma-based applications. However, electron clouds evolve in a complex collective fashion on the nanometer and femtosecond scales, producing electromagnetic screening that renders them inaccessible to existing optical probes. Here, we solve the long-standing challenge of characterizing the evolution of electron clouds generated upon irradiation of metallic structures using an ultrafast transmission electron microscope to record the charged plasma dynamics. Our approach to charge dynamics electron microscopy (CDEM) is based on the simultaneous detection of electron-beam acceleration and broadening with nanometer/femtosecond resolution. By combining experimental results with comprehensive microscopic theory, we provide a deep understanding of this highly out-of-equilibrium regime, including previously inaccessible intricate microscopic mechanisms of electron emission, screening by the metal, and collective cloud dynamics. Beyond the present specific demonstration, the here-introduced CDEM technique grants us access to a wide range of nonequilibrium electrodynamic phenomena involving the ultrafast evolution of bound and free charges on the nanoscale.

4.
ACS Nano ; 17(4): 3645-3656, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36736033

RESUMEN

The ultrafast dynamics of charge carriers in solids plays a pivotal role in emerging optoelectronics, photonics, energy harvesting, and quantum technology applications. However, the investigation and direct visualization of such nonequilibrium phenomena remains as a long-standing challenge, owing to the nanometer-femtosecond spatiotemporal scales at which the charge carriers evolve. Here, we propose and demonstrate an interaction mechanism enabling nanoscale imaging of the femtosecond dynamics of charge carriers in solids. This imaging modality, which we name charge dynamics electron microscopy (CDEM), exploits the strong interaction of free-electron pulses with terahertz (THz) near fields produced by the moving charges in an ultrafast scanning transmission electron microscope. The measured free-electron energy at different spatiotemporal coordinates allows us to directly retrieve the THz near-field amplitude and phase, from which we reconstruct movies of the generated charges by comparison to microscopic theory. The CDEM technique thus allows us to investigate previously inaccessible spatiotemporal regimes of charge dynamics in solids, providing insight into the photo-Dember effect and showing oscillations of photogenerated electron-hole distributions inside a semiconductor. Our work facilitates the exploration of a wide range of previously inaccessible charge-transport phenomena in condensed matter using ultrafast electron microscopy.

5.
Phys Rev Lett ; 129(9): 093401, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36083663

RESUMEN

We reveal a wealth of nonlinear and recoil effects in the interaction between individual low-energy electrons (≲100 eV) and samples comprising a discrete number of states. Adopting a quantum theoretical description of combined free-electron and two-level systems, we find a maximum achievable excitation probability of 100%, which requires specific conditions relating to the coupling strength and the transition symmetry, as we illustrate through calculations for dipolar and quadrupolar modes. Strong recoil effects are observed when the kinetic energy of the probe lies close to the transition threshold, although the associated probability remains independent of the electron wave function even when fully accounting for nonlinear interactions with arbitrarily complex multilevel samples. Our work reveals the potential of free electrons to control localized excitations and delineates the boundaries of such control.

6.
Nano Lett ; 22(16): 6737-6743, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35920815

RESUMEN

The emergence of dielectric open optical cavities has opened a new research avenue in nanophotonics. In particular, dielectric microspheres support a rich set of cavity modes with varying spectral characteristics, making them an ideal platform to study molecule-cavity interactions. The symmetry of the structure plays a critical role in the outcoupling of these modes and, hence, the perceived molecule-cavity coupling strength. Here, we experimentally and theoretically study molecule-cavity coupling mediated by the Mie scattering modes of a dielectric microsphere placed on a glass substrate and excited with far-field illumination, from which we collect scattering signatures both in the air and glass sides. Glass-side collection reveals clear signatures of strong molecule-cavity coupling (coupling strength 2g = 74 meV), in contrast to the air-side scattering signal. Rigorous electromagnetic modeling allows us to understand molecule-cavity coupling and unravel the role played by the spatial mode profile in the observed coupling strength.

7.
Light Sci Appl ; 9: 87, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435470

RESUMEN

Nanoscale photothermal effects enable important applications in cancer therapy, imaging and catalysis. These effects also induce substantial changes in the optical response experienced by the probing light, thus suggesting their application in all-optical modulation. Here, we demonstrate the ability of graphene, thin metal films, and graphene/metal hybrid systems to undergo photothermal optical modulation with depths as large as >70% over a wide spectral range extending from the visible to the terahertz frequency domains. We envision the use of ultrafast pump laser pulses to raise the electron temperature of graphene during a picosecond timescale in which its mid-infrared plasmon resonances undergo dramatic shifts and broadenings, while visible and near-infrared plasmons in the neighboring metal films are severely attenuated by the presence of hot graphene electrons. Our study opens a promising avenue toward the active photothermal manipulation of the optical response in atomically thin materials with potential applications in ultrafast light modulation.

8.
Curr Pharm Biotechnol ; 20(4): 346-351, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30892160

RESUMEN

BACKGROUND: Vancomycin is used mostly to overcome infections caused by methicillinresistant microorganisms. There are no well-established administration protocols for neonates and infants, so the leak of a specific administration regime in that population may lead to serum concentrations beyond the specified range. OBJECTIVE: This case series evaluated the pharmacokinetics adjustment from a vancomycin therapeutic regimen prescribed to neonates and infants with bacterial infection at a neonatal public hospital intensive- care-unit, with the primary purpose to verify cases of nephrotoxicity. METHODS: Three neonates and four infants taking vancomycin therapy, hospitalized in a public hospital from November 2014 to March 2015, were included in the study. Vancomycin serum concentrations were determined by particle-enhanced-turbidimetric inhibition-immunoassay. The vancomycin concentrations were used for dose adjustment by USC*Pack-PC-Collection®, a non-parametric maximization program. The trough serum concentration range of 10 to 20mg.L-1 was considered therapeutic. RESULTS: Three patients had serum concentration outside the reference-range, one with subtherapeutic, and two with supratherapeutic concentrations. All patients had concomitant use of drugs which interfered with vancomycin distribution and excretion pharmacokinetics parameters, including drugs that may enhance nephrotoxicity. One patient showed signs of acute renal damage, by low vancomycin and creatinine estimated clearances. CONCLUSION: The pharmacokinetic adjustment has been proven to be a useful and necessary tool to increase therapeutic efficacy and treatment benefits. The standard dose of vancomycin can be used to initiate therapy in neonates and infants admitted to the ICU, but after reaching the drug steady state, the dosing regimen should be individualized and guided by pharmacokinetic parameters.


Asunto(s)
Antibacterianos/administración & dosificación , Infecciones Bacterianas/tratamiento farmacológico , Vancomicina/administración & dosificación , Lesión Renal Aguda/sangre , Lesión Renal Aguda/prevención & control , Antibacterianos/sangre , Infecciones Bacterianas/sangre , Creatinina/sangre , Relación Dosis-Respuesta a Droga , Monitoreo de Drogas , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Estudios Retrospectivos , Vancomicina/sangre
9.
ACS Nano ; 13(5): 5184-5197, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-30916551

RESUMEN

Polaritonic modes in two-dimensional van der Waals materials display short in-plane wavelengths compared with light in free space. As interesting as this may look from both fundamental and applied viewpoints, such large confinement is accompanied by poor in/out optical coupling, which severely limits the application of polaritons in practical devices. Here, we quantify the coupling strength between light and 2D polaritons in both homogeneous and anisotropic films using accurate rigorous analytical methods. In particular, we obtain universal expressions for the cross sections associated with photon-polariton coupling by point and line defects, as well as with polariton extinction and scattering processes. Additionally, we find closed-form constraints that limit the maximum possible values of these cross sections. Specifically, the maximum photon-to-plasmon conversion efficiency in graphene is ∼10-6 and ∼10-4 for point and line scatterers sitting at its surface, respectively, when the plasmon and Fermi energies are comparable in magnitude. We further show that resonant particles placed at an optimum distance from the film can boost light-to-polariton coupling to order unity. Our results bear fundamental interest for the development of 2D polaritonics and the design of applications based on these excitations.

10.
Science ; 360(6386): 291-295, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29674587

RESUMEN

The ability to confine light into tiny spatial dimensions is important for applications such as microscopy, sensing, and nanoscale lasers. Although plasmons offer an appealing avenue to confine light, Landau damping in metals imposes a trade-off between optical field confinement and losses. We show that a graphene-insulator-metal heterostructure can overcome that trade-off, and demonstrate plasmon confinement down to the ultimate limit of the length scale of one atom. This is achieved through far-field excitation of plasmon modes squeezed into an atomically thin hexagonal boron nitride dielectric spacer between graphene and metal rods. A theoretical model that takes into account the nonlocal optical response of both graphene and metal is used to describe the results. These ultraconfined plasmonic modes, addressed with far-field light excitation, enable a route to new regimes of ultrastrong light-matter interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA