Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(47): 13934-13943, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38075648

RESUMEN

The high luminescence efficiency of cyclometallated iridium(iii) complexes, including those widely used in OLEDs, is typically attributed solely to the formally spin-forbidden phosphorescence process being facilitated by spin-orbit coupling with the Ir(iii) centre. In this work, we provide unequivocal evidence that an additional mechanism can also participate, namely a thermally activated delayed fluorescence (TADF) pathway. TADF is well-established in other materials, including in purely organic compounds, but has never been observed in iridium complexes. Our findings may transform the design of iridium(iii) complexes by including an additional, faster fluorescent radiative decay pathway. We discover it here in a new dinuclear complex, 1, of the form [Ir(N^C)2]2(µ-L), where N^C represents a conventional N^C-cyclometallating ligand, and L is a bis-N^O-chelating bridging ligand derived from 4,6-bis(2-hydroxyphenyl)-pyrimidine. Complex 1 forms selectively as the rac diastereoisomer upon reaction of [Ir(N^C)2(µ-Cl)]2 with H2L under mild conditions, with none of the alternative meso isomer being separated. Its structure is confirmed by X-ray diffraction. Complex 1 displays deep-red luminescence in solution or in polystyrene film at room temperature (λem = 643 nm). Variable-temperature emission spectroscopy uncovers the TADF pathway, involving the thermally activated re-population of S1 from T1. At room temperature, TADF reduces the photoluminescence lifetime in film by a factor of around 2, to 1 µs. The TADF pathway is associated with a small S1-T1 energy gap ΔEST of approximately 50 meV. Calculations that take into account the splitting of the T1 sublevels through spin-orbit coupling perfectly reproduce the experimentally observed temperature-dependence of the lifetime over the range 20-300K. A solution-processed OLED comprising 1 doped into the emitting layer at 5 wt% displays red electroluminescence, λEL = 625 nm, with an EQE of 5.5% and maximum luminance of 6300 cd m-2.

2.
ACS Photonics ; 10(12): 4315-4321, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38145168

RESUMEN

We report on the mechanism of enhancing the luminance and external quantum efficiency (EQE) by developing nanostructured channels in hybrid (organic/inorganic) light-emitting transistors (HLETs) that combine a solution-processed oxide and a polymer heterostructure. The heterostructure comprised two parts: (i) the zinc tin oxide/zinc oxide (ZTO/ZnO), with and without ZnO nanowires (NWs) grown on the top of the ZTO/ZnO stack, as the charge transport layer and (ii) a polymer Super Yellow (SY, also known as PDY-132) layer as the light-emitting layer. Device characterization shows that using NWs significantly improves luminance and EQE (≈1.1% @ 5000 cd m-2) compared to previously reported similar HLET devices that show EQE < 1%. The size and shape of the NWs were controlled through solution concentration and growth time, which also render NWs to have higher crystallinity. Notably, the size of the NWs was found to provide higher escape efficiency for emitted photons while offering lower contact resistance for charge injection, which resulted in the improved optical performance of HLETs. These results represent a significant step forward in enabling efficient and all-solution-processed HLET technology for lighting and display applications.

3.
Inorg Chem ; 62(45): 18465-18473, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37905928

RESUMEN

In this work, we introduce a spiro-fluorene unit into a phenylpyridine (CN)-type ligand as a simple way to deplanarize the structure and increase the solubility of the final platinum(II)···complex. Using a spiro-fluorene unit, orthogonal to the main coordination plane of the complex, reduces intermolecular interactions, leading to increased solubility but without significantly affecting the ability of the complex to form Pt···Pt dimers and excimers. This approach is highly important in the design of platinum(II) complexes, which often suffer from low solubility due to their mainly planar structure, and offers an alternative to the use of bulky alkyl groups. The nonplanar structure is also beneficial for vacuum-deposition techniques as it lowers the sublimation temperature. Importantly, there are no sp3 hybridized carbon atoms in the cyclometalating ligand that contain hydrogens, the undesired feature that is associated with the low stability of the materials in OLEDs. The complex displays high solubility in toluene, ∼10 mg mL-1, at room temperature, which allows producing solution-processed OLEDs in a wide range of doping concentrations, 5-100%, and EQE up to 5.9%, with a maximum luminance of 7400 cd m-2. Concurrently, we have also produced vacuum-deposited OLEDs, which display luminance up to 32 500 cd m-2 and a maximum EQE of 11.8%.

4.
Inorg Chem ; 62(14): 5772-5779, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36996164

RESUMEN

Alkylation of one of the phenolic hydroxyl groups in a salen-type tetradentate ligand changes the coordination mode from O^N^N^O to the cyclometallating C^N^N^O type. The ligand was used to synthesize a new cyclometalated luminescent Pt(II) complex 2. While in solution the complex is poorly luminescent, in the solid state the emission is reinstated, which allowed one to evaluate complex 2 as a phosphorescent emitter in organic light-emitting diodes. 2 displays external quantum efficiency (EQE) = 9.1% and a maximum luminance of 9000 cd m-2 in a vacuum-deposited device. We carried out comparative analysis of photo- and electroluminescence of complex 2 with O^N^N^O complex 1 and demonstrated that the similar luminescent properties of the O^N^N^O and C^N^N^O complexes are rather coincidental because they display different excited-state landscapes. Surprisingly, the two complexes display a dramatically different electrochemical behavior, with O^N^N^O coordination leading to the formation of a stable electropolymer but C^N^N^O coordination fully preventing electropolymerization.

5.
Dalton Trans ; 52(15): 4933-4953, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36951046

RESUMEN

Six new four-coordinate tetrahedral boron complexes, containing 9-borafluoren-9-yl and diphenylboron cores attached to orthogonal fluorine- and chlorine-substituted 8-quinolinolato ligand chromophores, have been synthesised, characterised, and applied as emitters in organic light-emitting diodes (OLEDs). An extensive steady-state and time-resolved photophysical study, in solution and in the solid state, resulted in the first-time report of delayed fluorescence (DF) in solid films of 8-quinolinolato boron complexes. The DF intensity dependence on excitation dose suggests that this emission originates from triplet-triplet annihilation (TTA). Density functional theory (DFT) and time-dependent density functional theory (TDDFT) studies give insight into the ground and excited state geometries, electronic structures, absorption energies, and singlet-triplet gaps in these new organoboron luminophores. Finally, given their highly luminescent behaviour, organic light-emitting diode (OLED) devices were produced using the synthesised organoboron compounds as emissive fluorescent dopants. The best OLED displays green-blue (λmaxEL = 489 nm) electroluminescence with an external quantum efficiency (EQE) of 3.3% and a maximum luminance of 6300 cd m-2.

6.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36560314

RESUMEN

Rapid and accurate detection of lethal volatile compounds is an emerging requirement to ensure the security of the current and future society. Since the threats are becoming more complex, the assurance of future sensing devices' performance can be obtained solely based on a thorough fundamental approach, by utilizing physics and chemistry together. In this work, we have applied thermal desorption spectroscopy (TDS) to study dimethyl methylophosphate (DMMP, sarin analogue) adsorption on zinc phthalocyanine (ZnPc), aiming to achieve the quantification of the sensing mechanism. Furthermore, we utilize a novel approach to TDS that involves quantum chemistry calculations for the determination of desorption activation energies. As a result, we have provided a comprehensive description of DMMP desorption processes from ZnPc, which is the basis for successful future applications of sarin ZnPc-based sensors. Finally, we have verified the sensing capability of the studied material at room temperature using impedance spectroscopy and took the final steps towards demonstrating ZnPc as a promising sarin sensor candidate.


Asunto(s)
Sustancias para la Guerra Química , Compuestos Organometálicos , Sustancias para la Guerra Química/análisis , Sarín , Compuestos Organometálicos/química , Compuestos de Zinc
7.
Chem Sci ; 13(45): 13600-13610, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36507161

RESUMEN

We present a study of aggregate excited states formed by complexes of the type Pt(N^C^N)X, where N^C^N represents a tridentate cyclometallating ligand, and X = SCN or I. These materials display near-infrared (NIR) photoluminescence in film and electroluminescence in NIR OLEDs with λ max EL = 720-944 nm. We demonstrate that the use of X = SCN or I modulates aggregate formation compared to the parent complexes where X = Cl. While the identity of the monodentate ligand affects the energy of Pt-Pt excimers in solution in only a subtle way, it strongly influences aggregation in film. Detailed calculations on aggregates of different sizes support the experimental conclusions from steady-state and time-resolved luminescence studies at variable temperatures. The use of X = I appears to limit aggregation to the formation of dimers, while X = SCN promotes the formation of larger aggregates, such as tetramers and pentamers, leading in turn to NIR photo- and electroluminescence > 850 nm. A possible explanation for the contrasting influence of the monodentate ligands is the lesser steric hindrance associated with the SCN group compared to the bulkier I ligand. By exploiting the propensity of the SCN complexes to form extended aggregates, we have prepared an NIR-emitting OLED that shows very long wavelength electroluminescence, with λ max EL = 944 nm and a maximum EQE = 0.3 ± 0.1%. Such data appear to be unprecedented for a device relying on a Pt(ii) complex aggregate as the emitter.

8.
J Phys Chem B ; 126(14): 2740-2753, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35353524

RESUMEN

The photophysical and electrochemical properties of a new class of fluorinated benzonitrile compounds substituted with mixed phenoxazine and carbazole units have been investigated. When absorbing in a large range of the UV-vis spectrum due to both localized and charge-transfer absorptions, these compounds show dual broad emission in solution and intense emission in PMMA films, with photoluminescence quantum yields changing from a few percent in solution to 18% in a more rigid environment. The compounds also exhibit thermally activated delayed fluorescence demonstrated by the role of oxygen in the quenching of delayed fluorescence and by time-resolved luminescence studies, with an efficiency directly related to the number of phenoxazine substituents. Electrochemistry reveals dramatic changes in the reduction mechanisms according to the number of remaining fluorine atoms on the benzonitrile core. All these results demonstrate how it is possible to tune the photophysical and electrochemical properties of easily synthesizable derivatives by controlling the nature and relative number of the substituents on a simple aromatic platform.

9.
Angew Chem Int Ed Engl ; 61(19): e202115140, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34870886

RESUMEN

The mechanism of thermally activated delayed fluorescence (TADF) in dendrimers is not clear. We report that fully-conjugated or fully-nonconjugated structures cause unwanted degenerate excited states due to multiple identical dendrons, which limit their TADF efficiency. We have synthesized asymmetrical "half-dendronized" and "half-dendronized-half-encapsulated" emitters. By eliminating degenerate excited states, the triplet locally excited state is ≥0.3 eV above the lowest triplet charge-transfer state, assuring a solely thermal equilibrium route for an effective spin-flip process. The isolated encapsulating tricarbazole unit can protect the TADF unit, reducing nonradiative decay and enhancing TADF performance. Non-doped solution-processed devices reach a high external quantum efficiency (EQEmax ) of 24.0 % (65.9 cd A-1 , 59.2 lm W-1 ) with CIE coordinates of (0.24, 0.45) with a low efficiency roll-off and EQEs of 23.6 % and 21.3 % at 100 and 500 cd m-2 .

10.
Front Chem ; 9: 743928, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540809

RESUMEN

A new method for facilitating the delivery, uptake and intracellular localisation of thermally activated delayed fluorescence (TADF) complexes was developed. First, confinement of TADF complexes in liposomes was demonstrated, which were subsequently used as the delivery vehicle for cellular uptake. Confocal fluorescence microscopy showed TADF complexes subsequently localise in the cytoplasm of HepG2 cells. The procedures developed in this work included the removal of molecular oxygen in the liposome preparation without disrupting the liposome structures. Time-resolved fluorescence microscopy (point scanning) showed initial prompt fluorescence followed by a weak, but detectable, delayed fluorescence component for liposomal TADF internalised in HepG2 cells. By demonstrating that it is possible to deliver un-functionalised and/or unshielded TADF complexes, a sensing function for TADFs, such as molecular oxygen, can be envisaged.

11.
PLoS Negl Trop Dis ; 15(7): e0009556, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34252106

RESUMEN

BACKGROUND: The introduction of the bacterium Wolbachia (wMel strain) into Aedes aegypti mosquitoes reduces their capacity to transmit dengue and other arboviruses. Evidence of a reduction in dengue case incidence following field releases of wMel-infected Ae. aegypti has been reported previously from a cluster randomised controlled trial in Indonesia, and quasi-experimental studies in Indonesia and northern Australia. METHODOLOGY/PRINCIPAL FINDINGS: Following pilot releases in 2015-2016 and a period of intensive community engagement, deployments of adult wMel-infected Ae. aegypti mosquitoes were conducted in Niterói, Brazil during 2017-2019. Deployments were phased across four release zones, with a total area of 83 km2 and a residential population of approximately 373,000. A quasi-experimental design was used to evaluate the effectiveness of wMel deployments in reducing dengue, chikungunya and Zika incidence. An untreated control zone was pre-defined, which was comparable to the intervention area in historical dengue trends. The wMel intervention effect was estimated by controlled interrupted time series analysis of monthly dengue, chikungunya and Zika case notifications to the public health surveillance system before, during and after releases, from release zones and the control zone. Three years after commencement of releases, wMel introgression into local Ae. aegypti populations was heterogeneous throughout Niterói, reaching a high prevalence (>80%) in the earliest release zone, and more moderate levels (prevalence 40-70%) elsewhere. Despite this spatial heterogeneity in entomological outcomes, the wMel intervention was associated with a 69% reduction in dengue incidence (95% confidence interval 54%, 79%), a 56% reduction in chikungunya incidence (95%CI 16%, 77%) and a 37% reduction in Zika incidence (95%CI 1%, 60%), in the aggregate release area compared with the pre-defined control area. This significant intervention effect on dengue was replicated across all four release zones, and in three of four zones for chikungunya, though not in individual release zones for Zika. CONCLUSIONS/SIGNIFICANCE: We demonstrate that wMel Wolbachia can be successfully introgressed into Ae. aegypti populations in a large and complex urban setting, and that a significant public health benefit from reduced incidence of Aedes-borne disease accrues even where the prevalence of wMel in local mosquito populations is moderate and spatially heterogeneous. These findings are consistent with the results of randomised and non-randomised field trials in Indonesia and northern Australia, and are supportive of the Wolbachia biocontrol method as a multivalent intervention against dengue, chikungunya and Zika.


Asunto(s)
Aedes/microbiología , Aedes/virología , Fiebre Chikungunya/transmisión , Dengue/transmisión , Control de Mosquitos/métodos , Wolbachia/fisiología , Infección por el Virus Zika/transmisión , Aedes/fisiología , Animales , Brasil/epidemiología , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Dengue/epidemiología , Dengue/virología , Virus del Dengue/fisiología , Femenino , Humanos , Incidencia , Masculino , Mosquitos Vectores/microbiología , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , Virus Zika/fisiología , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/virología
12.
Chem Sci ; 12(17): 6172-6180, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33996015

RESUMEN

A novel dinuclear platinum(ii) complex featuring a ditopic, bis-tetradentate ligand has been prepared. The ligand offers each metal ion a planar O^N^C^N coordination environment, with the two metal ions bound to the nitrogen atoms of a bridging pyrimidine unit. The complex is brightly luminescent in the red region of the spectrum with a photoluminescence quantum yield of 83% in deoxygenated methylcyclohexane solution at ambient temperature, and shows a remarkably short excited state lifetime of 2.1 µs. These properties are the result of an unusually high radiative rate constant of around 4 × 105 s-1, a value which is comparable to that of the very best performing Ir(iii) complexes. This unusual behaviour is the result of efficient thermally activated reverse intersystem crossing, promoted by a small singlet-triplet energy difference of only 69 ± 3 meV. The complex was incorporated into solution-processed OLEDs achieving EQEmax = 7.4%. We believe this to be the first fully evidenced report of a Pt(ii) complex showing thermally activated delayed fluorescence (TADF) at room temperature, and indeed of a Pt(ii)-based delayed fluorescence emitter to be incorporated into an OLED.

13.
J Org Chem ; 86(1): 429-445, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33251794

RESUMEN

The synthetic methodology to covalently link donors to form cyclophane-based thermally activated delayed fluorescence (TADF) molecules is presented. These are the first reported examples of TADF cyclophanes with "electronically innocent" bridges between the donor units. Using a phenothiazine-dibenzothiophene-S,S-dioxide donor-acceptor-donor (D-A-D) system, the two phenothiazine (PTZ) donor units were linked by three different strategies: (i) ester condensation, (ii) ether synthesis, and (iii) ring closing metathesis. Detailed X-ray crystallographic, photophysical and computational analyses show that the cyclophane molecular architecture alters the conformational distribution of the PTZ units, while retaining a certain degree of rotational freedom of the intersegmental D-A axes that is crucial for efficient TADF. Despite their different structures, the cyclophanes and their nonbridged precursors have similar photophysical properties since they emit through similar excited states resulting from the presence of the equatorial conformation of their PTZ donor segments. In particular, the axial-axial conformations, known to be detrimental to the TADF process, are suppressed by linking the PTZ units to form a cyclophane. The work establishes a versatile linking strategy that could be used in further functionalization while retaining the excellent photophysical properties of the parent D-A-D system.

14.
J Phys Chem C Nanomater Interfaces ; 124(11): 6090-6102, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32952768

RESUMEN

The rapid and reliable detection of lethal agents such as sarin is of increasing importance. Here, density-functional theory (DFT) is used to compare the interaction of sarin with single-metal-centered phthalocyanine (MPc) and MPc layer structures to a benign model system, i.e., the adsorption of dimethyl methylphosphonate (DMMP). The calculations show that sarin and DMMP behave nearly identical to the various MPcs studied. Among NiPc, CuPc, CoPc, and zinc phthalocyanine (ZnPc), we find the interaction of both sarin and DMMP to be the strongest with ZnPc, both in terms of interaction energy and adsorption-induced work function changes. ZnPc is thus proposed as a promising sensor for sarin detection. Using X-ray photoelectron spectroscopy, the theoretically predicted charge transfer from DMMP to ZnPc is confirmed and identified as a key component in the sensing mechanism.

15.
Dalton Trans ; 49(29): 10185-10202, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32666958

RESUMEN

A group of new boron complexes [BPh2{κ2N,N'-NC4H3-2-C(H)[double bond, length as m-dash]N-C6H4X}] (X = 4-Cl 4c, 4-Br 4d, 4-I 4e, 3-Br 4f, 2-Br 4g, 2-I 4h) containing different halogens as substituents in the N-aryl ring have been synthesized and characterized in terms of their molecular properties. Their photophysical characteristics have been thoroughly studied in order to understand whether these complexes exhibit an internal heavy-atom effect. Phosphorescence emission was found for some of the synthesized halogen-substituted boron molecules, particularly for 4g and 4h. DFT and TDDFT calculations showed that the lower energy absorption band resulted from the HOMO to LUMO (π-π*) transition, except for 2-I 4h, where the HOMO-1 to LUMO transition was also involved. The strong participation of iodine orbitals in HOMO-1 is reflected in the calculated absorption spectra of the iodine derivatives, especially 2-I 4h, when spin-orbit coupling (SOC) was included. Organic light-emitting diodes (OLEDs) based on these complexes, in the neat form or dispersed in a matrix, were also fabricated and tested. The devices based on films prepared by thermal vacuum deposition showed the best performance. When neat complexes were used, a maximum luminance (Lmax) of 1812 cd m-2 was obtained, with a maximum external quantum efficiency (EQEmax) of 0.15%. An EQEmax of ca. 1% along with a maximum luminance of 494 cd m-2 were obtained for a device fabricated by co-deposition of the boron complex and a host compound (1,3-bis(N-carbazolyl)benzene, mCP).

16.
Front Chem ; 8: 404, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457878

RESUMEN

Thermally activated delayed fluorescence (TADF) molecules offer nowadays a powerful tool in the development of novel organic light emitting diodes due to their capability of harvesting energy from non-emissive triplet states without using heavy-metal complexes. TADF emitters have very small energy difference between the singlet and triplet excited states, which makes thermally activated reverse intersystem crossing from the triplet states back to the singlet manifold viable. This mechanism generates a long-lived delayed fluorescence component which can be explored in the sensing of oxygen concentration, local temperature, or used in time-gated optical cell-imaging, to suppress interference from autofluorescence and scattering. Despite this strong potential, until recently the application of TADF outside lighting devices has been hindered due to the low biocompatibility, low aqueous solubility and poor performance in polar media shown by the vast majority of TADF emitters. To achieve TADF luminescence in biological media, careful selection or design of emitters is required. Unfortunately, most TADF molecules are not emissive in polar media, thus complexation with biomolecules or the formation of emissive aggregate states is required, in order to retain the delayed fluorescence that is characteristic of these compounds. Herein, we demonstrate a facile method with great generalization potential that maintains the photophysical properties of solvated dyes by combining luminescent molecules with polymeric nanoparticles. Using an established swelling procedure, two known TADF emitters are loaded onto polystyrene nanoparticles to prepare TADF emitting nanomaterials able to be used in live-cell imaging. The obtained particles were characterized by optical spectroscopy and exhibited the desired TADF emission in aqueous media, due to the polymeric matrix shielding the dye from solvent polarity effects. The prepared nanoparticles were incubated with live human cancer cells and showed very low cytotoxicity and good cellular uptake, thus making fluorescence microscopy imaging possible at low dye concentrations.

17.
Adv Sci (Weinh) ; 7(7): 1902087, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32274295

RESUMEN

Although numerous thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) have been demonstrated, efficient blue or even sky-blue TADF-based nondoped solution-processed devices are still very rare. Herein, through-space charge transfer (TSCT) and through-bond charge transfer (TBCT) effects are skillfully incorporated, as well as the multi-(donor/acceptor) characteristic, into one molecule. The former allows this material to show small singlet-triplet energy splitting (ΔE ST) and a high transition dipole moment. The latter, on the one hand, further lights up multichannel reverse intersystem crossing (RISC) to increase triplet exciton utilization via degenerating molecular orbitals. On the other hand, the nature of the molecular twisted structure effectively suppresses intermolecular packing to obtain high photoluminescence quantum yield (PLQY) in neat flims. Consequently, using this design strategy, T-CNDF-T-tCz containing three donor and three acceptor units, successfully realizes a small ΔE ST (≈0.03 eV) and a high PLQY (≈0.76) at the same time; hence the nondoped solution-processed sky-blue TADF-OLED displays record-breaking efficiency among the solution process-based nondoped sky-blue OLEDs, with high brightness over 5200 cd m-2 and external quantum efficiency up to 21.0%.

18.
Mater Sci Eng C Mater Biol Appl ; 109: 110528, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228970

RESUMEN

Thermally activated delayed fluorescence (TADF) has revolutionized the field of organic light emitting diodes owing to the possibility of harvesting non-emissive triplet states and converting them in emissive singlet states. This mechanism generates a long-lived delayed fluorescence component which can also be used in sensing oxygen concentration, measuring local temperature, or on imaging. Despite this strong potential, only recently TADF has emerged as a powerful tool to develop metal-free long-lived luminescent probes for imaging and sensing. The application of TADF molecules in aqueous and/or biological media requires specific structural features that allow complexation with biomolecules or enable emission in the aggregated state, in order to retain the delayed fluorescence that is characteristic of these compounds. Herein we demonstrate a facile method that maintains the optical properties of solvated dyes by dispersing TADF molecules in nanoparticles. TADF dye-doped silica nanoparticles are prepared using a modified fluorescein fluorophore. However, the strategy can be used with many other TADF dyes. The covalent grafting of the TADF emitter into the inorganic matrix effectively preserves and transfers the optical properties of the free dye into the luminescent nanomaterials. Importantly, the silica matrix is efficient in shielding the dye from solvent polarity effects and increases delayed fluorescence lifetime. The prepared nanoparticles are effectively internalized by human cells, even at low incubation concentrations, localizing primarily in the cytosol, enabling fluorescence microscopy imaging at low dye concentrations.


Asunto(s)
Colorantes Fluorescentes , Calor , Nanopartículas/química , Dióxido de Silicio , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Células HeLa , Humanos , Microscopía Fluorescente , Dióxido de Silicio/química , Dióxido de Silicio/farmacología
19.
Insects ; 11(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024068

RESUMEN

Deployment of Aedes aegypti mosquitoes carrying the endosymbiont bacterium Wolbachia has been identified as a promising strategy to reduce dengue, chikungunya, and Zika transmission. We investigated whether sampling larvae from ovitraps can provide reliable estimates on Wolbachia frequency during releases, as compared to the expensive adult-based BG-Sentinel. We conducted pilot releases in a semi-field system (SFS) divided into six cages of 21 m2, each with five ovitraps. Five treatments were chosen to represent different points of a hypothetical invasion curve: 10%, 25%, 50%, 75%, and 90% of Wolbachia frequency. Collected eggs were counted and hatched, and the individuals from a net sample of 27% of larvae per treatment were screened for Wolbachia presence by RT-qPCR. Ovitrap positioning had no effect on egg hatching rate. Treatment strongly affected the number of eggs collected and also the hatching rate, especially when Wolbachia was at a 10% frequency. A second observation was done during the release of Wolbachia in Rio under a population replacement approach when bacterium frequency was estimated using 30 BG-Sentinel traps and 45 ovitraps simultaneously. By individually screening 35% (N = 3904) of larvae collected by RT-qPCR, we were able to produce a similar invasion curve to the one observed when all adults were individually screened. If sampling is reduced to 20%, monitoring Wolbachia frequency with 45 ovitraps would be roughly half the cost of screening all adult mosquitoes captured by 30 BG-Sentinels. Our findings support the scale-up of Wolbachia releases, especially in areas with limited resources to afford massive trapping with BG-Sentinel traps.

20.
Dalton Trans ; 49(7): 2190-2208, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32003389

RESUMEN

Five new neutral heteroleptic iridium(iii) complexes IrL2(pic) (2-6) based on the archetypical blue emitter FIrpic have been synthesised. The cyclometallating ligands L are derived from 2-(2,6-F2-3-pyridyl)-4-mesitylpyridine (7), 2-(3-cyano-2,6-F2-phenyl)-4-mesitylpyridine (8), 2-(2,6-F2-phenyl)-4-[2,7-(HexO)2-9H-carbazol-9-yl]pyridine (9), 2-(2,6-F2-3-pyridyl)-4-[2,7-(HexO)2-9H-carbazol-9-yl]pyridine (10) and 2-(3-cyano-2,6-F2-phenyl)-4-[2,7-(HexO)2-9H-carbazol-9-yl]pyridine (11) for complexes 2, 3, 4, 5 and 6, respectively. The carbazole-functionalised ligands 9-11 show weak thermally activated delayed fluorescence (TADF) in solution. Complexes 5 and 6 reveal dual emission in polar solvents. A broad charge transfer (CT) band appears and increases in intensity relative to the higher energy emission band as solvent polarity is increased. The dual emission occurs when the energy of the ligand 3CT state is comparable to that of the 3MLCT state of the complex, resulting in fast interconversion between the two. Assignment of the ligand TADF and dual emission properties is supported by hybrid density functional theory (DFT) and time dependent DFT (TD-DFT) calculations. Phosphorescent organic light emitting devices (PhOLEDs) have been fabricated using these complexes as sky-blue emitters, and their performance is compared to devices using FIrpic and the previously reported complex IrL2(pic) 1 (L from the 2-(2,6-F2-phenyl)-4-mesitylpyridine ligand). For identical device structures, the device containing the carbazole complex 4 performs best out of the seven complexes. The dual emission observed in solution for complexes 5 and 6 is not observed in their devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...