Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1298302, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550290

RESUMEN

RNA editing is a post-transcriptional process that challenges the central dogma of molecular biology by modifying RNA sequences, introducing nucleotide changes at specific sites, and generating functional diversity beyond the genomic code, especially when it concerns organellar transcripts. In plants, this phenomenon is widespread, but its extent varies significantly among species and organellar genomes. Among land plants, the heterosporous lycophytes (i.e., Isoetes and Selaginella) stand out for their exceptionally high numbers of RNA-editing sites, despite their morphological stasis and ancient lineage. In this study, we explore the complete set of organellar protein-coding genes in the aquatic plant group Isoetes, providing a detailed analysis of RNA editing in both the mitochondrial and plastid genomes. Our findings reveal a remarkable abundance of RNA editing, particularly in the mitochondrial genome, with thousands of editing sites identified. Interestingly, the majority of these edits result in non-silent substitutions, suggesting a role in fine-tuning protein structure and function. Furthermore, we observe a consistent trend of increased hydrophobicity in membrane-bound proteins, supporting the notion that RNA editing may confer a selective advantage by preserving gene functionality in Isoetes. The conservation of highly edited RNA sequences over millions of years underscores the evolutionary significance of RNA editing. Additionally, the study sheds light on the dynamic nature of RNA editing, with shared editing sites reflecting common ancestry whereas exclusive edits matching more recent radiation events within the genus. This work advances our understanding of the intricate interplay between RNA editing, adaptation, and evolution in land plants and highlights the unique genomic features of Isoetes, providing a foundation for further investigations into the functional consequences of RNA editing in this enigmatic plant lineage.

2.
BMC Genomics ; 23(1): 313, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439930

RESUMEN

BACKGROUND: Canga is the Brazilian term for the savanna-like vegetation harboring several endemic species on iron-rich rocky outcrops, usually considered for mining activities. Parkia platycephala Benth. and Stryphnodendron pulcherrimum (Willd.) Hochr. naturally occur in the cangas of Serra dos Carajás (eastern Amazonia, Brazil) and the surrounding forest, indicating high phenotypic plasticity. The morphological and physiological mechanisms of the plants' establishment in the canga environment are well studied, but the molecular adaptative responses are still unknown. To understand these adaptative responses, we aimed to identify molecular mechanisms that allow the establishment of these plants in the canga environment. RESULTS: Plants were grown in canga and forest substrates collected in the Carajás Mineral Province. RNA was extracted from pooled leaf tissue, and RNA-seq paired-end reads were assembled into representative transcriptomes for P. platycephala and S. pulcherrimum containing 31,728 and 31,311 primary transcripts, respectively. We identified both species-specific and core molecular responses in plants grown in the canga substrate using differential expression analyses. In the species-specific analysis, we identified 1,112 and 838 differentially expressed genes for P. platycephala and S. pulcherrimum, respectively. Enrichment analyses showed that unique biological processes and metabolic pathways were affected for each species. Comparative differential expression analysis was based on shared single-copy orthologs. The overall pattern of ortholog expression was species-specific. Even so, we identified almost 300 altered genes between plants in canga and forest substrates with conserved responses in the two species. The genes were functionally associated with the response to light stimulus and the circadian rhythm pathway. CONCLUSIONS: Plants possess species-specific adaptative responses to cope with the substrates. Our results also suggest that plants adapted to both canga and forest environments can adjust the circadian rhythm in a substrate-dependent manner. The circadian clock gene modulation might be a central mechanism regulating the plants' development in the canga substrate in the studied legume species. The mechanism may be shared as a common mechanism to abiotic stress compensation in other native species.


Asunto(s)
Hierro , Suelo , Aclimatación , Bosques , Plantas , Suelo/química , Transcriptoma
3.
Sci Rep ; 7(1): 7493, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790327

RESUMEN

Amazon comprises a vast variety of ecosystems, including savannah-like Canga barrens that evolved on iron-lateritic rock plateaus of the Carajás Mountain range. Individual Cangas are enclosed by the rain forest, indicating insular isolation that enables speciation and plant community differentiation. To establish a framework for the research on natural history and conservation management of endemic Canga species, seven chloroplast DNA loci and an ITS2 nuclear DNA locus were used to study natural molecular variation of the red flowered Ipomoea cavalcantei and the lilac flowered I. marabaensis. Partitioning of the nuclear and chloroplast gene alleles strongly suggested that the species share the most recent common ancestor, pointing a new independent event of the red flower origin in the genus. Chloroplast gene allele analysis showed strong genetic differentiation between Canga populations, implying a limited role of seed dispersal in exchange of individuals between Cangas. Closed haplotype network topology indicated a requirement for the paternal inheritance in generation of cytoplasmic genetic variation. Tenfold higher nucleotide diversity in the nuclear ITS2 sequences distinguished I. cavalcantei from I. marabaensis, implying a different pace of evolutionary changes. Thus, Canga ecosystems offer powerful venues for the study of speciation, multitrait adaptation and the origins of genetic variation.


Asunto(s)
Adaptación Fisiológica/genética , ADN Intergénico/genética , Especiación Genética , Ipomoea/genética , Brasil , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Conservación de los Recursos Naturales , ADN de Cloroplastos/metabolismo , ADN de Cloroplastos/ultraestructura , ADN Intergénico/química , ADN Intergénico/metabolismo , Variación Genética , Pradera , Haplotipos , Ipomoea/clasificación , Conformación de Ácido Nucleico , Filogenia , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Bosque Lluvioso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...