Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol Res ; 2024: 7112940, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39359695

RESUMEN

Understanding the immune response generated by SARS-CoV-2 is critical for assessing efficient therapeutic protocols and gaining insights into the durability of protective immunity. The current work was aimed at studying the specific humoral responses against SARS-CoV-2 in Cuban COVID-19 convalescents. We developed suitable tools and methods based on ELISA methodology, for supporting this evaluation. Here, we describe the development of an ELISA for the quantification of anti-RBD IgG titers in a large number of samples and a similar test in the presence of NH4SCN as chaotropic agent for estimating the RBD specific antibody avidity. Additionally, a simple and rapid ELISA based on antibody-mediated blockage of the binding RBD-ACE2 was implemented for detecting, as a surrogate of conventional test, the levels of anti-RBD inhibitory antibodies in convalescent sera. In a cohort of 273 unvaccinated convalescents, we identified higher anti-RBD IgG titer (1 : 1,330, p < 0.0001) and higher levels of inhibitory antibodies blocking RBD-ACE2 binding (1 : 216, p < 0.05) among those who had recovered from severe illness. Our results suggest that disease severity, and not demographic features such as age, sex, and skin color, is the main determinant of the magnitude and neutralizing ability of the anti-RBD antibody response. An additional paired longitudinal assessment in 14 symptomatic convalescents revealed a decline in the antiviral antibody response and the persistence of neutralizing antibodies for at least 4 months after the onset of symptoms. Overall, SARS-CoV-2 infection elicits different levels of antibody response according to disease severity that declines over time and can be monitored using our homemade serological assays.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Ensayo de Inmunoadsorción Enzimática , Inmunidad Humoral , Inmunoglobulina G , SARS-CoV-2 , Humanos , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Cuba , Masculino , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Persona de Mediana Edad , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , Anciano , Enzima Convertidora de Angiotensina 2/metabolismo , Afinidad de Anticuerpos/inmunología
2.
RSC Chem Biol ; 3(2): 242-249, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35360883

RESUMEN

SARS-CoV-2 infection is mediated by the interaction of the spike glycoprotein trimer via its receptor-binding domain (RBD) with the host's cellular receptor. Vaccines seek to block this interaction by eliciting neutralizing antibodies, most of which are directed toward the RBD. Many protein subunit vaccines require powerful adjuvants to generate a potent antibody response. Here, we report on the use of a SARS-CoV-2 dimeric recombinant RBD combined with Neisseria meningitidis outer membrane vesicles (OMVs), adsorbed on alum, as a promising COVID-19 vaccine candidate. This formulation induces a potent and neutralizing immune response in laboratory animals, which is higher than that of the dimeric RBD alone adsorbed on alum. Sera of people vaccinated with this vaccine candidate, named Soberana01, show a high inhibition level of the RBD-ACE2 interaction using RBD mutants corresponding to SARS-CoV-2 variants of concern and wild-type expressed using the phage display technology. To our knowledge, this is the first time that the immunostimulation effect of N. meningitidis OMVs is evaluated in vaccine candidates against SARS-CoV-2.

3.
Vaccine ; 40(13): 1958-1967, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35193792

RESUMEN

SARS-CoV-2, the cause of the COVID-19 pandemic, has provoked a global crisis and death of millions of people. Several serological assays to determine the quality of the immune response against SARS-CoV-2 and the efficacy of vaccines have been developed, among them the gold standard conventional virus neutralization assays. However, these tests are time consuming, require biosafety level 3 (BSL3), and are low throughput and expensive. This has motivated the development of alternative methods, including molecular inhibition assays. Herein, we present a safe cell-based ELISA-virus neutralization test (cbE-VNT) as a surrogate for the conventional viral neutralization assays that detects the inhibition of SARS-CoV-2 RBD binding to ACE2-bearing cells independently of species. Our test shows a very good correlation with the conventional and molecular neutralization assays and achieves 100% specificity and 95% sensitivity. cbE-VNT is cost-effective, fast and enables a large-scale serological evaluation that can be performed in a BSL2 laboratory, allowing its use in pre-clinical and clinical investigations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Pruebas de Neutralización/métodos , Pandemias/prevención & control , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...