Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602494

RESUMEN

In the field of collective dynamics, the Kuramoto model serves as a benchmark for the investigation of synchronization phenomena. While mean-field approaches and complex networks have been widely studied, the simple topology of a circle is still relatively unexplored, especially in the context of excitatory and inhibitory interactions. In this work, we focus on the dynamics of the Kuramoto model on a circle with positive and negative connections paying attention to the existence of new attractors different from the synchronized state. Using analytical and computational methods, we find that even for identical oscillators, the introduction of inhibitory interactions modifies the structure of the attractors of the system. Our results extend the current understanding of synchronization in simple topologies and open new avenues for the study of collective dynamics in physical systems.

2.
Nat Commun ; 14(1): 2217, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072418

RESUMEN

Understanding diffusive processes in networks is a significant challenge in complexity science. Networks possess a diffusive potential that depends on their topological configuration, but diffusion also relies on the process and initial conditions. This article presents Diffusion Capacity, a concept that measures a node's potential to diffuse information based on a distance distribution that considers both geodesic and weighted shortest paths and dynamical features of the diffusion process. Diffusion Capacity thoroughly describes the role of individual nodes during a diffusion process and can identify structural modifications that may improve diffusion mechanisms. The article defines Diffusion Capacity for interconnected networks and introduces Relative Gain, which compares the performance of a node in a single structure versus an interconnected one. The method applies to a global climate network constructed from surface air temperature data, revealing a significant change in diffusion capacity around the year 2000, suggesting a loss of the planet's diffusion capacity that could contribute to the emergence of more frequent climatic events.

3.
Entropy (Basel) ; 24(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36359717

RESUMEN

We investigate opinion diffusion on complex networks and the interplay between the existence of neutral opinion states and non-trivial network structures. For this purpose, we apply a three-state opinion model based on magnetic-like interactions to modular complex networks, both synthetic and real networks extracted from Twitter. The model allows for tuning the contribution of neutral agents using a neutrality parameter. We also consider social agitation, encoded as a temperature, that accounts for random opinion changes that are beyond the agent neighborhood opinion state. Using this model, we study which topological features influence the formation of consensus, bipartidism, or fragmentation of opinions in three parties, and how the neutrality parameter and the temperature interplay with the network structure.

4.
Appl Netw Sci ; 6(1): 27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33821212

RESUMEN

National stay-at-home orders, or lockdowns, were imposed in several countries to drastically reduce the social interactions mainly responsible for the transmission of the SARS-CoV-2 virus. Despite being essential to slow down the COVID-19 pandemic, these containment measures are associated with an economic burden. In this work, we propose a network approach to model the implementation of a partial lockdown, breaking the society into disconnected components, or partitions. Our model is composed by two main ingredients: a multiplex network representing human contacts within different contexts, formed by a Household layer, a Work layer, and a Social layer including generic social interactions, and a Susceptible-Infected-Recovered process that mimics the epidemic spreading. We compare different partition strategies, with a twofold aim: reducing the epidemic outbreak and minimizing the economic cost associated to the partial lockdown. We also show that the inclusion of unconstrained social interactions dramatically increases the epidemic spreading, while different kinds of restrictions on social interactions help in keeping the benefices of the network partition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s41109-021-00366-7.

5.
Phys Rev E ; 103(1-1): 012216, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33601612

RESUMEN

There are numerous examples of studied real-world systems that can be described as dynamical systems characterized by individual phases and coupled in a networklike structure. Within the framework of oscillatory models, much attention has been devoted to the Kuramoto model, which considers a collection of oscillators interacting through a sinus function of the phase differences. In this paper, we draw on an extension of the Kuramoto model, called the Kuramoto-Sakaguchi model, which adds a phase lag parameter to each node. We construct a general formalism that allows us to compute the set of lag parameters that may lead to any phase configuration within a linear approximation. In particular, we devote special attention to the cases of full synchronization and symmetric configurations. We show that the set of natural frequencies, phase lag parameters, and phases at the steady state is coupled by an equation and a continuous spectra of solutions is feasible. In order to quantify the system's strain to achieve that particular configuration, we define a cost function and compute the optimal set of parameters that minimizes it. Despite considering a linear approximation of the model, we show that the obtained tuned parameters for the case of full synchronization enhance frequency synchronization in the nonlinear model as well.

6.
Phys Rev E ; 101(4-1): 042301, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32422764

RESUMEN

Spatial networks are a powerful framework for studying a large variety of systems belonging to a broad diversity of contexts: from transportation to biology, from epidemiology to communications, and migrations, to cite a few. Spatial networks can be described in terms of their total cost (i.e., the total amount of resources needed for building or traveling their connections). Here, we address the issue of how to gauge and compare the quality of spatial network designs (i.e., efficiency vs. total cost) by proposing a two-step methodology. First, we assess the network's design by introducing a quality function based on the concept of network's efficiency. Second, we propose an algorithm to estimate computationally the upper bound of our quality function for a given network. Complementarily, we provide a universal expression to obtain an approximated upper bound to any spatial network, regardless of its size. Smaller differences between the upper bound and the empirical value correspond to better designs. Finally, we test the applicability of this analytic tool set on spatial network data-sets of different nature.

7.
Sci Rep ; 10(1): 3666, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111953

RESUMEN

The explosion of network science has permitted an understanding of how the structure of social networks affects the dynamics of social contagion. In community-based interventions with spill-over effects, identifying influential spreaders may be harnessed to increase the spreading efficiency of social contagion, in terms of time needed to spread all the largest connected component of the network. Several strategies have been proved to be efficient using only data and simulation-based models in specific network topologies without a consensus of an overall result. Hence, the purpose of this paper is to benchmark the spreading efficiency of seeding strategies related to network structural properties and sizes. We simulate spreading processes on empirical and simulated social networks within a wide range of densities, clustering coefficients, and sizes. We also propose three new decentralized seeding strategies that are structurally different from well-known strategies: community hubs, ambassadors, and random hubs. We observe that the efficiency ranking of strategies varies with the network structure. In general, for sparse networks with community structure, decentralized influencers are suitable for increasing the spreading efficiency. By contrast, when the networks are denser, centralized influencers outperform. These results provide a framework for selecting efficient strategies according to different contexts in which social networks emerge.

8.
Chaos ; 30(1): 013105, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32013516

RESUMEN

Complex networks are essentially heterogeneous not only in the basic properties of the constituent nodes, such as their degree, but also in the effects that these have on the global dynamical properties of the network. Networks of coupled identical phase oscillators are good examples for analyzing these effects, since an overall synchronized state can be considered a reference state. A small variation of intrinsic node parameters may cause the system to move away from synchronization, and a new phase-locked stationary state can be achieved. We propose a measure of phase dispersion that quantifies the functional response of the system to a given local perturbation. As a particular implementation, we propose a variation of the standard Kuramoto model in which the nodes of a complex network interact with their neighboring nodes, by including a node-dependent frustration parameter. The final stationary phase-locked state now depends on the particular frustration parameter at each node and also on the network topology. We exploit this scenario by introducing individual frustration parameters and measuring what their effect on the whole network is, measured in terms of the phase dispersion, which depends only on the topology of the network and on the choice of the particular node that is perturbed. This enables us to define a characteristic of the node, its functionability, that can be computed analytically in terms of the network topology. Finally, we provide a thorough comparison with other centrality measures.

9.
Sci Rep ; 9(1): 4511, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872604

RESUMEN

Diversity, understood as the variety of different elements or configurations that an extensive system has, is a crucial property that allows maintaining the system's functionality in a changing environment, where failures, random events or malicious attacks are often unavoidable. Despite the relevance of preserving diversity in the context of ecology, biology, transport, finances, etc., the elements or configurations that more contribute to the diversity are often unknown, and thus, they can not be protected against failures or environmental crises. This is due to the fact that there is no generic framework that allows identifying which elements or configurations have crucial roles in preserving the diversity of the system. Existing methods treat the level of heterogeneity of a system as a measure of its diversity, being unsuitable when systems are composed of a large number of elements with different attributes and types of interactions. Besides, with limited resources, one needs to find the best preservation policy, i.e., one needs to solve an optimization problem. Here we aim to bridge this gap by developing a metric between labeled graphs to compute the diversity of the system, which allows identifying the most relevant components, based on their contribution to a global diversity value. The proposed framework is suitable for large multiplex structures, which are constituted by a set of elements represented as nodes, which have different types of interactions, represented as layers. The proposed method allows us to find, in a genetic network (HIV-1), the elements with the highest diversity values, while in a European airline network, we systematically identify the companies that maximize (and those that less compromise) the variety of options for routes connecting different airports.

10.
Proc Natl Acad Sci U S A ; 115(33): 8260-8265, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30072428

RESUMEN

What happens when a new social convention replaces an old one? While the possible forces favoring norm change-such as institutions or committed activists-have been identified for a long time, little is known about how a population adopts a new convention, due to the difficulties of finding representative data. Here, we address this issue by looking at changes that occurred to 2,541 orthographic and lexical norms in English and Spanish through the analysis of a large corpora of books published between the years 1800 and 2008. We detect three markedly distinct patterns in the data, depending on whether the behavioral change results from the action of a formal institution, an informal authority, or a spontaneous process of unregulated evolution. We propose a simple evolutionary model able to capture all of the observed behaviors, and we show that it reproduces quantitatively the empirical data. This work identifies general mechanisms of norm change, and we anticipate that it will be of interest to researchers investigating the cultural evolution of language and, more broadly, human collective behavior.


Asunto(s)
Evolución Cultural , Lenguaje , Normas Sociales , Humanos
11.
Phys Rev E ; 97(6-1): 060301, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30011485

RESUMEN

Synchronization processes are ubiquitous despite the many connectivity patterns that complex systems can show. Usually, the emergence of synchrony is a macroscopic observable; however, the microscopic details of the system, as, e.g., the underlying network of interactions, is many times partially or totally unknown. We already know that different interaction structures can give rise to a common functionality, understood as a common macroscopic observable. Building upon this fact, here we propose network transformations that keep the collective behavior of a large system of Kuramoto oscillators invariant. We derive a method based on information theory principles, that allows us to adjust the weights of the structural interactions to map random homogeneous in-degree networks into random heterogeneous networks and vice versa, keeping synchronization values invariant. The results of the proposed transformations reveal an interesting principle; heterogeneous networks can be mapped to homogeneous ones with local information, but the reverse process needs to exploit higher-order information. The formalism provides analytical insight to tackle real complex scenarios when dealing with uncertainty in the measurements of the underlying connectivity structure.

12.
Soft Matter ; 14(14): 2610-2618, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29569673

RESUMEN

We present a comprehensive computational study of the collective behavior emerging from the competition between self-propulsion, excluded volume interactions and velocity-alignment in a two-dimensional model of active particles. We consider an extension of the active brownian particles model where the self-propulsion direction of the particles aligns with the one of their neighbors. We analyze the onset of collective motion (flocking) in a low-density regime (10% surface area) and show that it is mainly controlled by the strength of velocity-alignment interactions: the competition between self-propulsion and crowding effects plays a minor role in the emergence of flocking. However, above the flocking threshold, the system presents a richer pattern formation scenario than analogous models without alignment interactions (active brownian particles) or excluded volume effects (Vicsek-like models). Depending on the parameter regime, the structure of the system is characterized by either a broad distribution of finite-sized polar clusters or the presence of an amorphous, highly fluctuating, large-scale traveling structure which can take a lane-like or band-like form (and usually a hybrid structure which is halfway in between both). We establish a phase diagram that summarizes collective behavior of polar active brownian particles and propose a generic mechanism to describe the complexity of the large-scale structures observed in systems of repulsive self-propelled particles.

13.
Sci Rep ; 7(1): 7087, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765622

RESUMEN

We present a model that takes into account the coupling between evolutionary game dynamics and social influence. Importantly, social influence and game dynamics take place in different domains, which we model as different layers of a multiplex network. We show that the coupling between these dynamical processes can lead to cooperation in scenarios where the pure game dynamics predicts defection. In addition, we show that the structure of the network layers and the relation between them can further increase cooperation. Remarkably, if the layers are related in a certain way, the system can reach a polarized metastable state. These findings could explain the prevalence of polarization observed in many social dilemmas.


Asunto(s)
Teoría del Juego , Modelos Teóricos , Conducta Social , Conducta Competitiva , Conducta Cooperativa , Humanos
14.
Phys Rev E ; 95(4-1): 042305, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28505785

RESUMEN

The combination of bistability and noise is ubiquitous in complex systems, from biology to social interactions, and has important implications for their functioning and resilience. Here we use a simple three-state dynamical process, in which nodes go from one pole to another through an intermediate state, to show that noise can induce polarization switching in bistable systems if dynamical correlations are significant. In large, fully connected networks, where dynamical correlations can be neglected, increasing noise yields a collapse of bistability to an unpolarized configuration where the three possible states of the nodes are equally likely. In contrast, increased noise induces abrupt and irreversible polarization switching in sparsely connected networks. In multiplexes, where each layer can have a different polarization tendency, one layer is dominant and progressively imposes its polarization state on the other, offsetting or promoting the ability of noise to switch its polarization. Overall, we show that the interplay of noise and dynamical correlations can yield discontinuous transitions between extremes, which cannot be explained by a simple mean-field description.

15.
Phys Rev E ; 95(4-1): 042203, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28505836

RESUMEN

We present theoretical and experimental studies on pattern formation with bistable dynamical units coupled in a star network configuration. By applying a localized perturbation to the central or the peripheral elements, we demonstrate the subsequent spreading, pinning, or retraction of the activations; such analysis enables the characterization of the formation of stationary patterns of localized activity. The results are interpreted with a theoretical analysis of a simplified bistable reaction-diffusion model. Weak coupling results in trivial pinned states where the activation cannot propagate. At strong coupling, a uniform state is expected with active or inactive elements at small or large degree networks, respectively. A nontrivial stationary spatial pattern, corresponding to an activation pinning, is predicted to occur at an intermediate number of peripheral elements and at intermediate coupling strengths, where the central activation of the network is pinned, but the peripheral activation propagates toward the center. The results are confirmed in experiments with star networks of bistable electrochemical reactions. The experiments confirm the existence of the stationary spatial patterns and the dependence of coupling strength on the number of peripheral elements for transitions between pinned and retreating or spreading fronts in forced network configurations (where the central or periphery elements are forced to maintain their states).

16.
Nat Commun ; 8: 13928, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067266

RESUMEN

Identifying and quantifying dissimilarities among graphs is a fundamental and challenging problem of practical importance in many fields of science. Current methods of network comparison are limited to extract only partial information or are computationally very demanding. Here we propose an efficient and precise measure for network comparison, which is based on quantifying differences among distance probability distributions extracted from the networks. Extensive experiments on synthetic and real-world networks show that this measure returns non-zero values only when the graphs are non-isomorphic. Most importantly, the measure proposed here can identify and quantify structural topological differences that have a practical impact on the information flow through the network, such as the presence or absence of critical links that connect or disconnect connected components.

17.
Chaos ; 26(9): 094824, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27781439

RESUMEN

We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

19.
Sci Rep ; 6: 19845, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26796971

RESUMEN

Chimera states, namely the coexistence of coherent and incoherent behavior, were previously analyzed in complex networks. However, they have not been extensively studied in modular networks. Here, we consider a neural network inspired by the connectome of the C. elegans soil worm, organized into six interconnected communities, where neurons obey chaotic bursting dynamics. Neurons are assumed to be connected with electrical synapses within their communities and with chemical synapses across them. As our numerical simulations reveal, the coaction of these two types of coupling can shape the dynamics in such a way that chimera-like states can happen. They consist of a fraction of synchronized neurons which belong to the larger communities, and a fraction of desynchronized neurons which are part of smaller communities. In addition to the Kuramoto order parameter ρ, we also employ other measures of coherence, such as the chimera-like χ and metastability λ indices, which quantify the degree of synchronization among communities and along time, respectively. We perform the same analysis for networks that share common features with the C. elegans neural network. Similar results suggest that under certain assumptions, chimera-like states are prominent phenomena in modular networks, and might provide insight for the behavior of more complex modular networks.


Asunto(s)
Caenorhabditis elegans/fisiología , Conectoma , Red Nerviosa/fisiología , Animales , Neuronas/fisiología
20.
Chaos ; 26(12): 123108, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28039967

RESUMEN

We found that a network-organized metapopulation of cooperators, defectors, and destructive agents playing the public goods game with mutations can collectively reach global synchronization or chimera states. Global synchronization is accompanied by a collective periodic burst of cooperation, whereas chimera states reflect the tendency of the networked metapopulation to be fragmented in clusters of synchronous and incoherent bursts of cooperation. Numerical simulations have shown that the system's dynamics switches between these two steady states through a first order transition. Depending on the parameters determining the dynamical and topological properties, chimera states with different numbers of coherent and incoherent clusters are observed. Our results present the first systematic study of chimera states and their characterization in the context of evolutionary game theory. This provides a valuable insight into the details of their occurrence, extending the relevance of such states to natural and social systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...